التقرير السنوي للعام ٢٠٠٦ (١٤٢٧-١٤٢٦) هـ
المركز الدولي للزراعة الملكية
رسالة المركز

يهدف المركز الدولي للزراعة الملحة إلى تعزيز استخدام موارد المياه المالحة في إنتاج نباتات مفيدة بيئياً واقتصادياً ونقل النتائج إلى مراكز الأبحاث والمجتمعات الوطنية.

مهمة المركز

يعمل المركز الدولي للزراعة الملحة على إعداد نظم إدارة الموارد المائية بشكل مستدام لزيادة المحاصيل الغذائية والأغذية ونباتات الزراعات التجميلية بالمياه المالحة، وتشجيع استخدام النباتات المناسبة لتحقيق التنمية الاقتصادية والاجتماعية.
التقرير السنوي للعام ٢٠٠٦
(١٤٢٦-١٤٢٧ هـ)
المركز الدولي للزراعة الملحية
©2007

متسوررات المركز الدولي للزراعة الملحية
ص ب ١٤٦٦٠
دبي
الإمارات العربية المتحدة

جميع الحقوق محفوظة. لا تعبّر المواضيع المنشورة في هذا التقرير عن رأي المركز الدولي للزراعة الملحية بما يختص بالأوضاع القانونية لأي دولة. كما يشجع المركز اقتناء بعض فقرات هذه المطبوعة بشرط الإشارة إلى المصدر.

تمت كافة عمليات النشر والطباعة والتغليف في دولة الإمارات العربية المتحدة.

الترقيم الدولي

المركز الدولي للزراعة الملحية. ٢٠٠٧. التقرير السنوي للعام ٢٠٠٦ (١٤٢٦-١٤٢٧ هـ). المركز الدولي للزراعة الملحية، دبي، الإمارات العربية المتحدة.

صورة الغلاف: يساهم التنوع الوراثي لأنواع النباتية في معالجة مشاكل الملوحة في أنظمة الإنتاج الزراعية. (تصوير غازي الجابري)
المححتوبات

<table>
<thead>
<tr>
<th>الرقم</th>
<th>العنوان</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>كلمة رئيس البنك الإسلامي للتنمية</td>
</tr>
<tr>
<td>2</td>
<td>كلمة الأمين العام ورئيس مجلس الإدارة</td>
</tr>
<tr>
<td>3</td>
<td>مجلس الأمانة</td>
</tr>
<tr>
<td>4</td>
<td>مجلس الإدارة</td>
</tr>
<tr>
<td>5</td>
<td>البرنامج الفني</td>
</tr>
<tr>
<td>6</td>
<td>البرنامج المدارس الدراسات العليا</td>
</tr>
<tr>
<td>7</td>
<td>برنامج إدارة الأنظمة الإلكترونية</td>
</tr>
<tr>
<td>8</td>
<td>استخدام استعدادات للشبكة والموارد</td>
</tr>
<tr>
<td>9</td>
<td>تطبيق برنامج إدارة الشبكة في بعض المناطق المتضررة من مصادر المفيضات</td>
</tr>
<tr>
<td>10</td>
<td>التوصيف والتقييم الأولي للمؤثرات البيئية المتصلة بخلال</td>
</tr>
<tr>
<td>11</td>
<td>برنامج إدارة الأنظمة الحاسوبية</td>
</tr>
<tr>
<td>12</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>13</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>14</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>15</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>16</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>17</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>18</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>19</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>20</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>21</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>22</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>23</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>24</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>25</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>26</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>27</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>28</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>29</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>30</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>31</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>32</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>33</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>34</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>35</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>36</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>37</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>38</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>39</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>40</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>41</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>42</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>43</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>44</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>45</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>46</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>47</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>48</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>49</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>50</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>51</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>52</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>53</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>54</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>55</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>56</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>57</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>58</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>59</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>60</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>61</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>62</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>63</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>64</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>65</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>66</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>67</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>68</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>69</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>70</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>71</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>72</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>73</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>74</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>75</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>76</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>77</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>78</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>79</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>80</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>81</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>82</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>83</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>84</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>85</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>86</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>87</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>88</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>89</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>90</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>91</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>92</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>93</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>94</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>95</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>96</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>97</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>98</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>99</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>100</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>101</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>102</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>103</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>104</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>105</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>106</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>107</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>108</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>109</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>110</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>111</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>112</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>113</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>114</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>115</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>116</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>117</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>118</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>119</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>120</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>121</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>122</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>123</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>124</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>125</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>126</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>127</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>128</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>129</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>130</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>131</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>132</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>133</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>134</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>135</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>136</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>137</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>138</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>139</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>140</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>141</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>142</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>143</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>144</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>145</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>146</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>147</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>148</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>149</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>150</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>151</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>152</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>153</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>154</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>155</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>156</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>157</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>158</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>159</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>160</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>161</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>162</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>163</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>164</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>165</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>166</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>167</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>168</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>169</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>170</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>171</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>172</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>173</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>174</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>175</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>176</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>177</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>178</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>179</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>180</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>181</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>182</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>183</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>184</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>185</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>186</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>187</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>188</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>189</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>190</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>191</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>192</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>193</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>194</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>195</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>196</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>197</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>198</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>199</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
<tr>
<td>200</td>
<td>برنامج إدارة التطبيقات الفنية</td>
</tr>
</tbody>
</table>

لا يوجد محتوى يُوَّلِد محتوى يمكن قراءته بشكل طبيعي.
كلمة رئيس البنك الإسلامي للتنمية

العام 2006 منعتفاً هاماً للمركز الدولي للزراعة العضوية.

يتمثل العمل في المجتمع الإسلامي، فقد تفاوض الدكتور محمد حسن العطار، المدير العام، الذي أدار المركز، بحثاً في تأسيسه في العام 1999. لذلك تشكّلت لجنة لاختيار المدير العام الجديد والفتحات المرشحين للنصب في شهر سبتمبر إلى أن وقع اختيار لجنة على الدكتور تيموثي البرغوثي، وسرعان أن أعلن أن إدارة البنك الإسلامي للتنمية تدعم هذا الاختيار الموفق بذلتك.

لعل أن أحد أهم أحداث هذا العام تمثل في التوجه الجديد لتسوية المخاطر القريبة، فقد انتدب المركز، بتفويض من البنك الإسلامي للتنمية، لجنة من دول الخبرة والكفاءة الدولية لتطوير استراتيجية المركز البحثية الخاصة بالأعمال 2008-2012. تكونت لجنة من الدكتور شوقي البرغوثي المستشار في البنك الدولي والمدير العام السابق للمعهد الدولي لبحوث محاصيل المناطق المدارية شبه القارة (إكرسات) والمدير ديفيد سيفر المدير العام السابق للمعهد الدولي لإدارة المياه (إيدي) والمدير بابن سواريز، مدير مختبر ريفيرسيبي للزراعة العضوية في ولاية كاليفورنيا، التابع لوزارة الزراعة الأمريكية.

tدوّن الاستراتيجية المقترحة، التي يدعمها البنك الإسلامي، للتنمية، إلى توسع مساحات مجال المركز لتشمل الممارسة المتكاملة للزراعة وتعزيتها بما فيها الرياح الهاشمية حيث تتكامل مع برامج المركز الأولية في مجال الزراعة العضوية.

وقد أجرى الفريق مباحثات موسيقية مع إدارة المركز وخبرائه وعدها من الخبراء والمسؤولين في برامج البحث الزراعية الوطنية في المنطقة للوصول إلى أهم الأهداف الاستراتيجية المطلوبة، وقرر بعد ذلك ورشة عمل خلال شهر فبراير 2007 في دبي لمناقشة الخطة وإقرارها.

شارك المركز أيضاً خلال شهر مايو في الاجتماع السنوي لمجلس الخدمات الوطني للتنمية في الكويت وقد توجه على الاجتماعات من المشاريع الزراعية الملحة ترأسها الدكتور أمازي بوكري، نائب رئيس البنك للعمليات حيث جفت الندوة بنجاح كبير واستقبلت عدوها كثيراً من الخبراء والمسؤولين.

كما أتممت لي الفرصة خلال شهر سبتمبر لزيارة مقر المركز في دبي ومناقشة عدداً من القضايا الهامة مع معايير الدكتور محمد أحمد الكردي وغيره من الجهات الرسمية و웨ب إيه لتركز إدارية المركز. وقد أثار ذلك الزيارته أثراً كبيراً في الهدف ما لم يستمر في تحقيق إدارية المركز وموظفيه في عملهم.

أرجو أخباراً إلى الشكر إلى حكومة دولة الإمارات العربية المتحدة لدعمها المستمر المتواصل الذي ساهم في نجاح المركز خلال سنواته عهد.

كما أتممت التوفيق والنجاح الدائم لفكرة موزع المركز الدولي للزراعة العضوية في سعيهم المستمر نحو تحقيق معايير الأقران والمجتمعات في أمانتها الإسلامية.

الدكتور أحمد محمد علي
رئيس البنك الإسلامي للتنمية
رئيس مجلس أمناء المركز الدولي للزراعة العضوية
كلمة السيد الرئيس العام ورئيس مجلس الإدارة

تأسس المركز الدولي للزراعة الملكية في العام 1999 بالتعاون بين البنك الإسلامي للتنمية وجماهيرية دولة الإمارات العربية المتحدة. وركز البرنامج البحثية المقررة للسنوات العشرة الأولى على الأبحاث العلمية المتعلقة بالزراعة الملكية، فتح ذيل الإنتاجات المحلية التي حققت المركز، وخصوصاً في مجالات إدارة المياه والمناظر الإنتاج الزراعية المرتبطة بها، على تحقيق البنك الإسلامي للتنمية والدولة المضيفة على حد سواء. لهذا اتخذ المركز قراراً هاماً في النحو لتوسيع برامج البحثية لتنطوي الأمور المتعلقة بهذة المياه والإدارة المتكاملة لمصادر المياه. وانتدب المركز لهذا الغرض لجنة من الخبراء الدوليين من أجل وضع الخطوط العريضة التي تتضمن نجاح هذا التوجه.

طورت اللجنة خلال العام وثيقة الخط الرازن كلية الاستراتيجية والرؤية المستقبلية لأبحاث المركز الدولي للزراعة الملكية والتعاون مع عدد من الخبراء والمسؤولين من دول المنطقة. وتتولى هذه الخلية المنظمة للمراكز الرئيسية التي تركز على مواضيع المياه والمناظر المختلفة وما يساهم في دعم برامج البحثية الزراعية العملية في المنطقة في مجالات الأبحاث الزراعية المتعلقة بالمصادر المتواجدة للمياه وتحويتهم لتكملان مع أبحاث الزراعة الملكية التقليدية للمركز.

يُستعرض هذا التقرير السنوي نتائج أبحاث المركز في مجال الزراعة الملكية مع التركيز على الأبحاث الهامة التالية:

- مشروع إقليمي للأعلى المحملة للموارد التي ينوي البنك الدولي للتنمية الزراعية (إيفاد).
- مشروع مشروع المهم للدحمة والعثور على المياه في كازاخستان والكاميرون وأوزبكستان الذي ينوي البنك الإسلامي للتنمية.
- مشروع دراسة التربة في إمارة أبو ظبي بالتعاون مع هيئة البيئة - أبو ظبي.
- المشروع المستمر للأعلى والثروة الحيوانية بالتعاون مع جامعة الإمارات العربية المتحدة.
- المشاريع المشتركة في غلادفورد ومصر والأردن وباكستان.

حصل المركز خلال العام 2006 على حوالي مليون دولار أمريكي لتمويل بعض المشاريع المشتركة وذلك نتيجة لجهود الجنسية في هذا المجال ودعم البنك الإسلامي للتنمية الذي شجب المركز على الحصول على موارد مالية من مصادر خارجية.

توجه للشكر أولاً إلى الدكتور محمد حسن العطار لتفانيه في إدارة المركز خلال السنوات السبع الماضية، ثم اتجه للنجاح والتفوق. كما توجه للشكر إلى الدكتور أحمد محمد علي رئيس البنك الإسلامي للتنمية والدكتور أ.د. بوبكر سويتي نائب رئيس البنك للعمليات لدعمهما غير المحدود للمركز.

د. شوقي البرغوثي
مدير العام
فوزي السلفا
رئيس مجلس الإدارة
مجلس الأمناء

الرئيس
معالي الدكتور أحمد محمد علي
رئيس البنك الإسلامي للتنمية

الأعضاء

- سعادة السيد أحسن محمد
 مستشار وزير المالية للمملكتين الحكومية
 وزارة المالية
 (الدول الممثلة: إندونيسيا، بروني دار السلام، سورينام، فانزويسيا)

- سعادة السيد وليد عيسى عبد اللاوي
 القنصل العام، الجزائر
 (الدول الممثلة: بنين، الجزائر، فلسطين، موريتانيا، اليمن)

- سعادة السيد أبو فيم صموئيل إسماعيل ذيب الله
 أمين وزارة الاتصالات
 وزارة الإعلام
 (الدولة الممثلة: أفغانستان، بنغلاديش، باكستان)

- سعادة السيد محمد محمد الزروق
 رئيس والمدير العام
 الشركة العربية الليبية للإستثمارات الخارجية
 طرابلس، ليبيا
 (الدولة الممثلة: ليبيا)

- سعادة السيد سمو ميراتو
 مدير الإدارة المالية
 جيبوتي العاصمة، جيبوتي
 (الدولة الممثلة: الجيبوتي، العراق، الأردن، لبنان، جزر المالديف، عمان)

- سعادة السيد يعقوب هميم سامي
 المستشار الاقتصادي للرئيس
 نيويورك
 (الدولة الممثلة: بوروندي، الكاميرون، تشاد، الغابون، غامبيا، مالي، موريتانيا، السنغال، تونسي)

- سعادة السيد زينب زهران
 وزارة التطور الاقتصادي
 القاهرة، جمهورية مصر العربية
 (الدولة الممثلة: مصر)
This page contains a photograph of a group of people, but there is no natural text to transcribe.
البرامج الفنية
برنامج المصادر الوراثية النباتية
إدخال وحفظ المصادر الوراثية النباتية (GR01)

فترة المشروع: مستمر
الشركاء: بنوك المصادر الوراثية النباتية الوطنية والدولية
المصدر: أساسي

أهمية المشروع

يتعلق استخراج الأراضي المالحة توفر المصادر الوراثية النباتية المحملة للملوحة. لهذا استمر المركز في تنوع مجموعة الوراثية من خلال إدخال سلالات نباتات متحملة للملوحة وحفظها في بنك المصادر الوراثية النباتية ضمن ظروف محكمة للمحافظة على جودتها وتوفيرها بالكميات المناسبة لاستخدام الباحثين والخبراء في برامج الإنتاج الزراعي. وبما أن إدارة البنوك الوراثية تطلب سلسلة من العمليات المعقدة والمتداخلة، لذا لابد من توثيق عمليات التخزين والوصيف بطريقة علمية لتحسين أداء العمل فيها.

أهداف المشروع

• تحديد وإدخال السلالات المتحملة للملوحة.
• حفظ هذه السلالات وإكاتبها بكميات مناسبة للأغراض البحثية.
• تطوير نظام أداء البنوك الوراثية من خلال إيجاد نظام متطور لمعالجة المعلومات.

إنجازات المشروع في العام 2006

حصل المركز خلال العام 2006 على 1008 سلالة نباتية تنتمي إلى 10 أنواع نباتية من عدة مصادر (الجدول 1). لصل بذلك عدد مدخلات البنك الوراثي في المركز إلى 8,533 سلالة (الملحق 1).

كما أعد خبراء المركز قاعدة بيانات متنوعة سجلت فيها المعلومات المتواضعة سابقاً عن مصادر البذور وكميتها الاصلية المستقلة والكيميات التي أنتجها المركز في حقول الإكت Failed to render embedded object.
<table>
<thead>
<tr>
<th>المصادر</th>
<th>الجنس/النوع</th>
<th>العدد</th>
<th>الاسم الشائع</th>
</tr>
</thead>
<tbody>
<tr>
<td>شركة كيمسيد الدولية الخاصة، أستراليا</td>
<td>River saltbush</td>
<td>1</td>
<td>Atriplex amnicola</td>
</tr>
<tr>
<td>شركة كيمسيد الدولية الخاصة، أستراليا</td>
<td>Old man saltbush</td>
<td>1</td>
<td>A. nummularia</td>
</tr>
<tr>
<td>شركة كيمسيد الدولية الخاصة، أستراليا</td>
<td>Wavy leaf saltbush</td>
<td>1</td>
<td>A. undulata</td>
</tr>
<tr>
<td>محطة الإنتاج النباتي الإقليمية، أيا، أمريكا</td>
<td>Canola</td>
<td>100</td>
<td>Brassica napus</td>
</tr>
<tr>
<td>إيريسات، الهند</td>
<td>Pigeonpea</td>
<td>137</td>
<td>Cajanus cajan</td>
</tr>
<tr>
<td>إيريسات، الهند</td>
<td>Chickpea</td>
<td>10</td>
<td>Cicer arietinum</td>
</tr>
<tr>
<td>محطة حفظ المصادر الوراثية النباتية، بريغين، أمريكا</td>
<td>Guar</td>
<td>99</td>
<td>Cyamopsis tetragonoloba</td>
</tr>
<tr>
<td>محطة حفظ المصادر الوراثية النباتية، أيا، أمريكا</td>
<td>Sunflower</td>
<td>100</td>
<td>Helianthus annuus</td>
</tr>
<tr>
<td>المعهد الدولي للزراعة المدارية، إباندا، نيجيريا</td>
<td>Cowpea</td>
<td>23</td>
<td>Vigna unguiculatus</td>
</tr>
<tr>
<td>وحدة المصادر الوراثية النباتية، نيويورك، أمريكا</td>
<td>Garden asparagus</td>
<td>11</td>
<td>Asparagus officinalis</td>
</tr>
<tr>
<td>المجموع</td>
<td></td>
<td>483</td>
<td></td>
</tr>
</tbody>
</table>

فيها معلومات وصفية لحوالي 900 سلالة نباتية بحيث تنطوي مع نظام شبكة المعلومات الوراثية النباتية لوزارة الزراعة الأمريكية التي زودت المركز بهذه المصادر الوراثية في السنوات السابقة.

خطة العمل للعام 2007

إدخال سلالات الأنواع النباتية الملحية والمت tolerant للملوحة وخصوصا الأشجار والخضار التي يفتقر المركز لبعض أنواعها.

لذلك سيتم تنظيم رحلات بحثية لجمع الأنواع النباتية المحلية المتولمة للملوحة في شبه الجزيرة العربية. كما سيتم مراقبة السلالات المشتركة دورياً لتقدير حالاتها الحيوية وإنتاج السلالات التي تظهر نقصها عن الحد المطلوب. وسيتم تجميع البيانات المتعلقة بتجارب تقييم الملوحة وحفظها في قاعدة البيانات الخاصة لتحقيق الغرض المطلوب منها.
إكتئار وتوزيع المجموعة الوراثية للنباتات المتحملة للملوحة (GR02)

فترة المشروع: مستمر
 المصدر: أساسي

أهمية المشروع

يتوفر التنوع الوراثي للمصادر الوراثية النباتية لخبراء المركز الدولي للزراعة الملحية بذور السلالات المستخدمة في تطوير أنظمة الإنتاج الزراعية المروية بالمياه المالحة. لكن استخدام هذه السلالات يتطلب إكتئارها لتوفيرها بكميات مناسبة للأغروض البحثية وخصوصاً أن كمية البذور التي تجمع عليها المركز من المصادر الخارجية قليلة في أغلب الأحيان. كما أنه لابد من إكتئار بذور السلالات التي تنخفض جودتها الحيوية لتفهمها أو تناقش كمية البدور بسبب توريعها على الباحثين. وتعتبر مراحل إكتئار هذه السلالات من أهم مراحل العمل نظرًا لما تطلب منهم من شروط مناسبة لنمو النباتات، والحصول على أكبر كمية ممكنة من البذور، مع المحافظة في الوقت نفسه على الصفات الوراثية للنباتات المزروعة من خلال عزلها لتتجنب التلقيح الخلقي فيما بينها.

أهداف المشروع

- إكتئار بذور سلالات المجموعات الوراثية النباتية بكميات مناسبة مع المحافظة على صفاتها الوراثية الأصلية.
- توزيع بذور سلالات المجموعات الوراثية النباتية المتحملة للملوحة على الباحثين.

إنجازات المشروع في العام 2006

- إكتئار البدور
 - الذرة الرفيعة (Sorghum bicolor) زرعت في الحقل بذور 43 سلالة من الذرة الرفيعة التي أثبتت تحملها للملوحة في السنوات السابقة فأنتجت جميعها بذورًا باستخدام الطرق الزراعية المعيارية.
 - الدخن اللولؤي (Pennisetum glaucum) زرعت في الحقل بذور 29 سلالة من الدخن اللولؤي التي أثبتت تحملها للملوحة في تجارب المركز السابقة، وما أن الدخن اللولؤي من المحاصيل ذات التلقيح الخلقي، لذلك عزل ستة سلائل المزروعة عن بعضها البعض للحفاظ على صفاتها الوراثية ثم جمعت بذورها للاستخدام لاحقًا.

يعتبر الرغل من النباتات المتحملة للملوحة
القمح الطري (Triticum aestivum) زرع في الحقل بذور 59 سلالة محليّة عمانية لإكثار بذورها فأنتج معظمها بذوراً بكمات كافية.

الليبيد (Cenchrus ciliaris) زرع في الحقل بذور 4 سلالة متجمعة للملوحة من الليبيد فأنتجت جميعها بذوراً بكمات كافية.

الرغل (Atriplex) زرع في الحقل بذور 37 سلالة تنتمي إلى 7 أنواع من الرغل فمنها 31 سلالة منها وانتجبت 10 سلالات فقط بذوراً بحلول نهاية العام. وبلغت كمية البذور المنتجة من السلالة (PI 357343) للنوع (A. hortensis) حوالي 1 كغم في الحوض الواحد بينما لا يزال نمو بقية السلالات وانتاجها للبذور مستمراً والتي يتصف بعضها بأنه من فئة النباتات المعمرة والبعض الآخر من فئة النباتات ثنائية الحول.

عذر سنابل الدخن اللولوتي لممنع التقطيح الخلطي

كما زرع في الحقل خلال شهر نوفمبر بذور 537 سلالة مختلفة لإكثارها خلال الموسم القادم تتضمن 341 سلالة جديدة حصل عليها المركز مؤخراً منها 100 سلالة من عباد الشمس، و 99 سلالة من الكانولا (Canola)، و 99 سلالة من الغوار (Guar)، و 99 سلالة من القمح (Pigeon pea)، و 33 سلالة من اللوبيا (Cowpea)، و 10 سلالة من الحمص. كما زرع في الحقل 196 سلالة من المجموعة المحفوظة في بنك المصادر الوراثية النباتية منها 121 سلالة من الكانولا (Quinoa)، و 46 سلالة من الذنبية الدنبية (Barnyard millet)، و 17 سلالة من البنجريد الشوندر (B. tectoride) العلوي، و 12 سلالة من اللباب (Hyacinth bean) وزرع خلال شهر نوفمبر أيضاً 73 سلالة متحملة

يكتض بذور الكانولا

التقرير السنوي للمركز الدولي للزراعة الملحية للعام 2006 (1427 هـ)
للموحلة من النباتات التقليدية منها 32 سلالة من الذرة الرفيعة، و 25 سلالة من الدخن اللؤلؤي، وسلالة واحدة من الشعير. وكان نمو السلالات بشكل عام جيداً ما عدا أنواع الفوائ واللوبيا والذنبية.

زرعت في أحواض ملاستيكية ضمن ظروف محكمة في البيوت الزجاجية 25 سلالة أخرى من السلالات التي لم تنتج بذورًا في الظروف الحقلية منها 20 سلالة من الترمس (Lupine) و 4 سلالات من اللبلاب وسلالة واحدة من القمح العماني المحلي، فكان النمو الأولي للقمح واللبلاب جيداً. وبالرغم من أن نمو الترمس كان جيداً في البدء، ولكنها تراجع فيما بعد بسبب نقص المواد المغذية في البذور.

توزيع البذور

وزع المركز بذور 146 سلالة لمصر وتونس شملت 4 سلالات من الفضة، 28 سلالة من اللبند، 3 سلالات من الكانولا، سلالة واحدة من عشب الفيل (Elephant grass)، 29 سلالات من البنجر (الشوندر والطلقي) 3 سلالة من الدخن اللؤلؤي، 40 سلالة من الذرة الرفيعة إلى مصر، وسلالتين من الفضة، و 400 سلالة من اللبند إلى تونس.

خطة العمل للعام 2007

إكتشاف بذور سلالات المجموعات الوراثية ذات الحيوية المنخفضة أو التي تناقصت كمية

بتوزيرها (حسب معطيات المشروع GR01) لتوفيرها بكميات كافية وجودة مناسبة للباحثين. كما سيتم إكتشاف بذور سلالات المجموعات الوراثية المتحللة للموحلة (حسب معطيات المشروع GR05) لتوفيرها بكميات كبيرة للتوزيع.

التنوع الوراثي لسلالات اللبند
التوصيف والتقييم الأولي لتحمل المجموعات الوراثية النباتية للملوحة (GR05)

فترة المشروع: مستمر
المصادر: أساسي

أهمية المشروع

يعتبر التوصيف الظاهري والتقييم الأولي للنباتات المحتملة للملوحة من المراحل الهامة في التمييز بين سلالات المجموعات الوراثية وانتخاب الأصناف الواعدة منها، ويتم التوصيف الظاهري على السلالات المزروعة في الحقل لأغراض الإكثار والبحث والاستناد على معايير دولية، بينما يتم تقييم تحمل الملوحة على المستوى المخبري. وفقًا تعاون المركز الدولي للزراعة الملحية مع المركز الدولي للبحوث الزراعية في المناطق الجافة (إيكاردا) وغيره من مراكز المجموعة الاستشارية للبحوث الزراعية الدولية (سيجار) لدراسة غلة عددًا من المحاصيل الهامة وتحديد صفاتها الظاهرية من أجل اختيار الأصناف الأفضل والمتملحة للظروف القاسية لاستخدامها لاحقًا في برامج تحسين المحاصيل.

أهداف المشروع

- التمييز بين السلالات باستخدام معايير التوصيف الظاهري.
- التقييم الأولي لتحديد السلالات المحتملة لدرجات الملوحة المختلفة.
- المساهمة في برامج البحوث العالمية لتحسين إنتاجية المناطق المتملحة.

إنجازات المشروع في العام 2006

زُرعت في أواخر العام 2005 ثلاث مجموعات من الشعير حصل عليها المركز من إيكاردا مشكل البنوتش الخاصة بالمناطق قليلة الأمطار (ذات الشتاء الحاد) ومتوسطة هطول الأمطار، بالإضافة إلى مجموعة مراقبة أخرى لدراسة صفاتها الظاهرية. كما زُرعت أيضًا مجموعة أخرى خاصة بالمناطق قليلة الأمطار (ذات الشتاء المعتدل) لدراسة غلتها. تنتمي كل مجموعة من مجموعة الصفات الظاهرية 100 سلالة. وتتضمن مجموعة دراسة الفئة 24 سلالة بثلاثة مكررات. روى هذه السلالات بالمياه العذبة وطبق عليها الأساليب الزراعية التقليدية من أجل تحديد غلتها الكلية. وسجلت خلال مرحلتين نمو النباتات في الإزهار وارتفاع النباتات واصطحابها ومقاومتهما لصداء الأوراق وغلة البذور وأرسلت كافة البيانات إلى إيكاردا. كما حافظت بذور 36 سلالة واحدة منها في بنك المصادر الوراثية النباتية بالمركز لاستخدامها في تجارب تحمل الملوحة فيما بعد.

وحصل المركز في العام 2006 على بذور ثلاث مجموعات أخرى من الشعير من إيكاردا تحمل 100 سلالة من بذور المناطق قليلة الأمطار (ذات الشتاء المعتدل) و35 سلالة من بذور الحمص الممدة، و9 سلالة من بذور العدس المحتملة للجفاف.
كما حصل المركز من المعهد الدولي لبحوث محاصيل المناطق المدارية شبه القاحلة (إكريسات) على مجموعة من بذور البصلة الهندية تتضمن 132 سلالة تمثل تنوعًا وراثيًا عالميًا لهذا المحصول حيث زرعت خلال شهر نوفمبر في حقول المركز، وتشير النتائج الأولية إلى النمو الجيد لهذه السلالات.

خطة العمل للعام 2007

التصنيف الظاهري لسلالات المجموعات المستلمة من إيكاردما بما فيها بيانات مواعيد الأزهار والنضج وطول النباتات وغطاء البذور ليتم اختيار أفضل الأصناف للتجارب اللاحقة، كما سيتم تقييم تحميل الملوحة لسلالات عباد الشمس والخوار واللوبيا والكانتولا والبصلة الهندية التي حصل عليها المركز مؤخرًا (الجدول 1) باستخدام منظمات الاختبار السريعة في ظروف محكمة.
برنامج إدارة الأنظمة الزراعية
الاستخدام المستدام للترية والمياه

تطبيق أساليب الزراعة الملحة في بعض المناطق الممتلئة في بنغلاديش (PMS09)

فترة المشروع: 2007-2009

الشركاء: معهد البحوث الزراعية في بنغلاديش

المصادر: معهد البحوث الزراعية في بنغلاديش، أساسي

أهمية المشروع

يبلغ عدد سكان بنغلاديش حوالي 1.4 مليار نسمة وهي من البلاد النامية التي يتزايد فيها عدد السكان ب معدلات كبيرة مما يتطلب استغلال الأراضي الممتلئة التي تبلغ مساحتها حوالي 8800000 هكتار وزراعتها في فترات الجفاف لتأميم الغذاء الكافي لهذا العدد المتزايد من السكان.

تطل الأمطار في بنغلاديش خلال فترة الرياح الموسمية التي تبدأ من شهر يونيو بمعدل سنوي يبلغ حوالي 2000 ملم. يؤدي تداخل مياه البحر إلى الأراضي الزراعية القريبة من المناطق الساحلية خلال الأشهر الجافة في مارس وأبريل إلى تزايد مشاكل المياه واللغز بسبب ارتفاع منسوب المياه الجوفية فيها فلا تستغل الأراضي مطلقاً خلال ذلك الموسم.

لكن يمكن زراعة بعض المحاصيل التي تدر عائدات تقريباً جيداً للسكان كالطماطم والبطاطس الأحمر والخيار والفلفل والآخرين على الطرق الزراعية المناسبة. وتشمل طرق الري بالتنقيط على الأحاديد الطريقة المتلألة لترشيحها الأملاح حول المحيط الجذري للنبات.

الشكل 1: مقارنة أساليب الزراعة التقليدية بأسلوب الزراعة بالهيدرولوني والري بالتنقيط لمحمول الخيار

الشكل 2: مقارنة أساليب الزراعة التقليدية بأسلوب الزراعة بالهيدرولوني والري بالتنقيط لمحصول الطماطم
أهداف المشروع

زراعة المحاصيل باستخدام طريقة الري بالتنقيط على الأحاديد ومقارنة نتائج الغلة والملوحة مع غيرها من الطرق الزراعية الشائعة في تلك المنطقة.

تحويل بيانات الغلة إلى مؤشرات اقتصادية لدراسة الجذور الاقتصادية الكلية.

عرض نتائج المشروع على المزارعين والمنظمات غير الحكومية.

إنجازات المشروع في العام 2006

زرعت محاصيل الطماطم والفلكل والبطيخ الأحمر والخيار في التربة المثلجة لميزة

"شارم أجي" التابعة لمقاطعة "بوجازي" باستخدام طرق مختلفة للري خلال فترة

الأشهر الجافة. واعتبرت الطريقة التقليدية الشائعة في تلك المناطق "الزراع الماء" في المسابك ومن دون ري هي الطريقة المعمولية للتجارة لتنافر معها نتائج الزراعة بالماء على أطراف الأحاديد مع رهما بالرشاشات، والزراعة بالماء أو من غير الماء

على أطراف الأحاديد باستخدام الري بالتنقيط. وبلغ معدل ضغ المياه بالتنقيط 4.6

لتر/ساعة باستخدام مياه الأمطار المجمعة التي تعادل ملحوتها 0.4 ديسيمتر/م.

توفر مياه الأمطار المجمعة مصدرًا هامًا للري خلال فترة الأشهر الجافة، كما يمكن

استخدام البرك التي تجمع فيها مياه الأمطار لأغراض الزراعة السائمة. لذلك أجريت في

العام 2006 دراسة تحليل جدوى استخدام بركة مساحة سطحها 4 دونم وعمقها

3.5 متر حقل مساحته 6 دونمات مزرعة بمحاصيل المشروع في التجربة فكانت

الشكل 1: مقارنة أداء الزراعة التقليدية بالمياه والماء والري بالتنقيط لمحصول الفطير

الشكل 2: مقارنة أداء الزراعة التقليدية بالمياه والماء والري بالتنقيط لمحصول الفطير
نسبة العائد على التكلفة 3.74 للطماطم و 3.50 للبطيخ الأحمر و 2.45 للخيار و 1.57 للفلفل.

كما وفرت طريقة الزراعة بالمهاد على أطراف المسابك باستخدام الري بالتنقيط 55% - 72% من مياه الري مقارنة بالطريقة التقليدية بالمهاد على أطراف الأحالي مع الري بالرشاشات للمحاصيل المزروعة، ووفر استخدام المهاد 21% - 25% من مياه الري بأسلوب التنقيط.

بلغت إنتاجية محصول الطماطم باستخدام أسلوب الزراعة بالمهند والري بالتنقيط على أطراف الأحالي 69 طن/هكتار أي حوالي أربعة أضعاف الطريقة التقليدية (15 طن/هكتار) وكانت نسبة العائد على التكلفة 14% بينما كانت بالطريقة التقليدية 14.1% وبلغت إنتاجية محصول البطيخ الأحمر 55 طن/هكتار ونسبة العائد على التكلفة 1.14% باستخدام أسلوب الزراعة بالمهند والري بالتنقيط على أطراف الأحالي، بينما بلغ 12 طن/هكتار ونسبة العائد على التكلفة 1.64% بالطريقة التقليدية. وكانت نتائج محصول الخيار مشجعة أيضًا، إذ بلغت إنتاجيته 24 طن/هكتار ونسبة العائد على التكلفة 3.88% باستخدام نفس أسلوب الزراعة، بينما كان العائد على التكلفة الأقل بالنسبة لمحصول الفلفل (2).

ساهم أسلوب الزراعة بالمهند والري بالتنقيط في تخفيض ملوحة التربة بنسبة 71% للطماطم و 74% للفلفل و 77% للبطيخ الأحمر و 75% للخيار خلال شهر مارس الأكثر جفافًا مقارنة بالأسلوب التقليدي للمزارعين (الأشكال 4-6).

نظم المركز أيضاً بتاريخ 20 مارس يوماً حقيلاً لاستعراض نتائج المشروع حضره أكثر من 100 مزارع وعدد من المسؤولين حيث أبدى المزارعون اهتماماً واضحاً بتطبيق التقنيات الحديثة.

خطة العمل للعام 2007

زراعة المحاصيل الهامة التي تدر عائداً تقدماً في حقول المزارعين خلال فترة الأشهر الجافة الممتدة من ديسمبر 2006 وحتى مارس 2007 وتنظيم يوم حقيلي في أوائل العام. مما أن المرحلة الأولى من التجربة سوف تنتهي في يونيو 2007 لذلك سيتم تحضير مسودة المرحلة الثانية للمشروع.
دراسة جدوى الزراعة الملحيّة في دولة الإمارات العربية المتحدة (PMS32)

فترة المشروع: 2006-2007

الشركة: وزارة البيئة والمياه

المصدر: الوكالة الدولية للطاقة الذرية، وزارة البيئة والمياه، أساسي

أهمية المشروع

أعد المركز الدولي للزراعة الملحيّة بالتعاون مع وزارة البيئة والمياه في دولة الإمارات العربية المتحدة الوثيقة الإستراتيجية لدولة الإمارات الخاصة بمشروع الوكالة الدولية للطاقة الذرية لاستخدام المياه الجوفية الملحية والعادمة في الانتاج الزراعي. كما تم الاتفاق على تحسين تقرير عن جدوى الزراعة الملحيّة في دولة الإمارات كي يستخدم كدليل لإعداد برامج الانتاج الزراعي في الدولة واستكمال المعلومات الناقصة في هذا المجال.

أهداف المشروع

- جمع البيانات المتوفّرة حول موارد المياه المالحة والمناطق الزراعية المتملحة.
- التجهيزات المتوفّرة للمزارع من معدات وأنظمة الري والصرف، وتجمع ورشة.
- المحاصيل واستراتيجيات التسويق.
- تدريب البيانات المتوفّرة عن نوعية ومقدمة المياه والتربة المالحة.
- إعداد دليل للبرنامج الوطني للبحوث.

إنجازات المشروع في العام 2006

أعد خبراء المركز وزارة البيئة والمياه تقريراً عن جدوى الزراعة الملحيّة في الانتاج الزراعي تضمن تحديد أسباب الاستفادة المتخفّضة لبعض المحاصيل وبخصوصاً الفصائل المتوفّرة بتنوع المياه التربة المستخدمة. وقد تم الاستفادة من المعلومات الكثيرة المتوفّرة لدى الوزارة وموظفي اليراشد الزراعي، والمزارعين من نوعية ومقدمة المياه من أجل تحديد المناطق التي تعاني من مشاكل التمحل وعن الانتاج الزراعي المناسب. لكن المعلومات الخاصة بمواصفات التربة وخصوصاً النسبة المتمثلة لا تزال قليلة في هذا المجال. وبالرغم من ذلك، جمعت كافة المعلومات المتوفّرة لتحليلها وعرضها من قبل الخبراء. كما أضيف للمشروع بنداً آخر يتعلق برسم الجوانب الاجتماعية والاقتصادية للحصول على اتجاهات النشاطات الحالية والمستقبلية لأنظمة الانتاج الزراعي باستخدام الزراعة الملحيّة في الدولة.

خطة العمل للعام 2007

الانتهاء من إعداد التقرير وتقديمه للوزارات والبلديات والجامعات ومراكز البحث الوطنية المعنيّة للاستفادة منه في إعداد برامج وطني للزراعة الملحيّة في الدولة.
استخدام مياه البحر الناتجة عن مزارع شركة الروبيان الوطنية في مشاريع الزراعة الملحية بالمملكة العربية السعودية (PMS33)

فترة المشروع: 2008–2004

الشريكة: شركة الروبيان الوطنية بالمملكة العربية السعودية
المصدر: شركة الروبيان الوطنية

أهمية المشروع
تعتبر شركة الروبيان الوطنية بالمملكة العربية السعودية إحدى أكبر شركات الانتاج الروبيان على مستوى العالم حيث يصل إنتاجها لحوالي 1000 طن سنوياً. ويعتبر مقر الشركة في منطقة البحيرة الساحلية، حيث تبعد حوالي 40 كم عن مدينة جدة، يتوسط مياه البحر المحيط بمساحة 400 م²، ينتمي إلى أحواض زراعة الروبيان، بينما تبع مياه البحر الناتجة عن الأحواض إلى قناة تصريف خاصة تصب في مياه البحر مباشرة. لذلك قررت الشركة استغلال المياه للتربة الغنية بالمواد العضوية الناتجة عن مزارع الروبيان في مشاريع الإنتاج الزراعي واستصلاح السواحل وخصصها أنه يقع بالقرب من هذه المنطقة بجبلة ضخمة يمكن استغلالها بزراعة ضفافها وأشجار القرم (Avicennia marina) (القرفة)، كما يمكن استخدام هذه البحيرة التي تمتد لحوالي 4 كم في تربية الأسماك والروبيان.

أهداف المشروع
- استخدام مياه البحر المسترجة في زراعة الأعلاف ونباتات الزراعة التجميلية ونباتات الطاقة الحيوية ونباتات التسميد العضوي الملحية.
- زيادة المساحة المزروعة بنبات القرم على ضفاف البحيرة وعلى أطراف قناة الصرف.
- دراسة استخدام النباتات الملحية لتخصيب المسطبات.

إنجازات المشروع في العام 2006
وزود المركز الدولي للزراعة الملحية خلال العامين 2004 و 2005 مقر المشروع بحوالي 7،500 شكة من مختلف الشموع والأشجار الملحية، وحوالي 3،700 بنرة للعديد أنواع من الأشجار الملحية، وأعدت الشركة منطقة مخصصة للتجارب مساحتها 5 هكتارات وجزءين من أراضي المنطقة لأكثر من 100 نبات، ووفقًا للطبيعة المناسبة لإكثر الشتات البذور، وإدامة مملوءة فيها بسبب إرشادات خبراء المركز.
أشرف خبراء المركز خلال العام 2006 على تحضير شبكة الري لزراعة شتلات الأشجار التي استخدمت كمصادر للرياح، ورعت أنواع الأشجار في أحوال أكثر. وأشرف خبراء المركز أيضًا على تدريب موظفي الشركة لأكتمل الأنواع المختلفة من النباتات في المختبر. وقد تأخر زراعة بعض أنواع النباتات بسبب العواصف الرملية الشديدة التي تعرضت لها المنطقة خلال الفترة الممتدة من أبريل حتى أغسطس. لكن هذه العواصف أثبتت قدرة أنواع أشجار الدامس (Conocarpus) وشجيرات الأرك (Salvadora) على مقاومة العواصف وحماية الأنواع الأخرى المزروعة في المنطقة.

الأخير المزرعة في المنطقة.

زرع في موقع المشروع أيضاً عدداً كبيراً من بذور أشجار الفرير المجمعة من المناطق الساحلية ثم نقلت البذور النامية إلى المناطق المنخفضة من البحر ذات الملوحة المرتفعة بعد أصلابها تدريجياً على مستويات الملوحة المختلفة.

زار خبراء المركز موقع المشروع خلال شهر نوفمبر لمناقشة كيفية حماية المنطقة من العواصف الرملية ووضع خطة عمل لزراعة المنطقة تدريجياً خلال السنة التالية. كما وافقت إدارة الشركة على تمديد فترة المشروع المشترك مع المركز لمدة عامين.

خطة العمل للعام 2007

التركيز على زراعة أشجار البيج، ومصادح الرياح في أحوال التجارب، وإكثار شتلات النباتات واختبارها عند مستويات الملوحة المختلفة.

لذلك ستتوفر الشركة صوياً جيداً من القمر الصناعي للبحيرة لتحديد المناطق التي يجب زراعتها بأشجار البيج حيث أن المتوسط إكثار حوالي 1000 شتلة Zealandية سنوياً على أن يستمر العمل حوالي 5-6 سنوات.

وقد اقترح خبراء المركز زيادة عدد شتلات مصادح الرياح المحتوية محل التجارب (5 هكتار) لذلك ستبدأ زراعة المنطقة في الفترة الممتدة بين شهر نوفمبر 2006 وشهر نوفمبر 2007 وسوف يزور خبراء المركز موقع التجارب خلال شهر أبريل ونوفمبر للإشراف على سير العمل. وسيستمر العمل خلال تلك الفترة في نقل وزراعة عدد آخر من الأشجار والشجيرات.

وسوف يستمر العمل في إكافار شتلات النباتات المختلفة وجني منطقة خاصة لاختيارها في ممثل جديد عند مستويات ملوحة 55-60 متراً شملياً.

العشب المرمأء يجري من مياه البحر المسترجعة من مزارع الروبيان.
مسح التربية في إمارة أبو ظبي (36)

فترة المشروع: 2009-2005

الشركاء: هيئة البيئة - أبو ظبي
الشركة المنفذة: جي آر إم الدولية، أستراليا
المصادر: هيئة البيئة - أبو ظبي، أساسي

أهمية المشروع

تعتبر التربية أحد الجوانب الهامة للبيئة وتؤدي دوراً كبيراً في التفاعل البيئي من خلال ربط مصادر المياه باستخدام الأرضي. كما أن حماية التربية لتعزيز الزراعة وتطوير الغابات وحماية الحياة البرية من شأنه أن يحافظ على البيئة بشكل عام ويعزز الاقتصاد الوطني.

ويساهم في تخفيض خصائص التربة في تحقيق التنمية المستدامة. وقد حققت عدداً من دول العالم تقديراً كبيراً لتوفر مصادر التربة الخصبة والمياه العذبة فيها، لكن إمارة أبو ظبي مختلفة في طبيعتها الجغرافية والمناخية عن غيرها من المناطق وتتفنن بالتالي لهذه المصادر المنتجة.

لذلك تنفذ هيئة البيئة في أبو ظبي بالتعاون مع المركز الدولي للزراعة الملحية مشروعًا يهدف إلى تحديد طبيعة مصادر التربية في الإمارة. وأفضل طرق استخدامها، فتستفيد الهيئة والمراكز المجمعة في إمارة أبو ظبي الدولية لمسح التربية الإمارة بشكل كامل. ويهدف هذا المشروع لتقديم المعلومات عن كمية المياه وتنوعية التربية في مختلف مناطق الإمارة وتعزيز الزراعة وتحقيق تحسينات الإمكانات البيئية لكل منطقة ومحافظة على التربية وإدارة العمليات الزراعية.

أهداف المشروع

- إجراء مسح شامل لزراعة إمارة أبو ظبي بقيمة 1: 100,000.
- إجراء مسح لحديقة منطقة مساحتيها 400 هكتار من الأراضي الزراعية بقيمة 1: 25,000.
- نشر المعلومات والداتس الخاصة بالزراعة والماء والأراضي المستخدمة.
- إنشاء قاعدة بيانات باستخدام نظام المعلومات الجغرافية البيئية.

تحديد طبقات التربة المختلفة

(الصورة توضح عملية تحديد طبقات التربة المختلفة.)
• إنشاء دليل لأنواع النبات المتنوعة.
• تأهيل الكوادر البشرية الوطنية في دولة الإمارات العربية المتحدة.

إنجازات المشروع في العام 2006

لاحظاً لمذكرة التفاهم الموقعة بين المركز الدولي للزراعة والمياه وهيئة البيئة في أبوظبي في أبريل 2005، أعد المركز عقد خطة عمل المشروع وتم التوقيع عليه بين الهيئة وشركة جي آر إم الدولية المنفذة للمشروع بتاريخ 25 أبريل 2006. كما وسع المركز مكتبة في أبوظبي وجهزها بكافة الملاحظات الضرورية لاستضافة فريق عمل الشركة المنفذة.

ابتدأ العمل في المشروع بتجهيز الخرائط الرئيسية بقياس 1: 25،000، وابتدأ العمل الميداني في شهر نوفمبر. كما اكتمل مع نهاية العام تنفيذ الأعمال التالية:

• اختبار 3,781 موقع.
• تصنيف 30 موقعًا من خريطة المسح.
• تشمل 29 نوعًا مختلفًا للفترات.
• مسح 990,000 هكتار (8%) من مجمل المساحة.

البدء بوضع خرائط ومعايير استخدام أنواع النبات المختلفة.

تحديد أنواع الاستخدامات الحالية المختلفة للفترات.

تكليف جامعة الإمارات العربية المتحدة لتنفيذ الدراسات المخبرية للمشروع.

عقد مباحثات مع وزارة الزراعة الأمريكية وجامعة غرب أستراليا لمراقبة جودة الدراسات المخبرية.

تحليل 50 عينة من النبات.

إنشاء أنواع خاص بالزراعة يضم 70 عينة.

العديد من العوامل المستخدمة من المشروع لتفعيل احتياجاتهم المختلفة والتأكد من تحقيق المشروع لمتطلباتهم.
الانتهاء من إعداد وثيقة نظام المعلومات الإلكتروني

لترة أبو ظبي.

الانتهاء من إعداد تقارير نموذج قاعدة البيانات الجغرافية

وتنظام إدارة بيانات التربة والاستشعار عن بعد.

إعداد برنامج أولي لتطوير الكوارد البنى الوطنية في

مجال التربة.

عقد دورة تدريبية حول مفاهيم مسم التربة بتاريخ

16-15 فبراير في مقر المركز بديبي حضرها 17 متدرباً.

خطة العمل للعام 2007

الاستمرار في تنفيذ المحاجر المختلفة للمشروع ومن ضمنها

تنفيذ مسح مكلف بمقياس 1 : 1,000,000، وتحديث قاعدة معلومات التربة والتأكد

من جودة الأعمال المنفذة ضمن الخطة الموضوعة. كما سيتم إعداد تقارير بنتائج

عمليات الحفر العميق وتناغم التربة وترشيحها ومقاباتها.

سيتم أيضاً تجديد الاستخدامات المكننة لمساحة تعادل مليون هكتار من الأراضي

الزراعية المروية وتنفيذ مسح شامل لمنطقة تعادل 400,000 هكتار منها باستخدام

مقياس 1 : 5,000. وسيتم تحضير خرائط بنوعية التربة وخصائصها والغطاء

النباتي عليها ومدى تدهور نوعيتها وملحوظتها ونوعية استخداماتها باستخدام عدة

مقياسات (1 : 1,000,000, 1 : 250,000, 1 : 100,000). وسيتم إعداد ثلاثة تقارير

مرحلة للعمل والتي يقدم سنوي على سير العمل في المشروع. ويتضمن برنامج العمل أيضاً

التدريب الميداني لمواطني دولة الإمارات خلال الدورة التدريبية حول التقنيات المخبرية

اللترة التي ستعقد في مقر المركز بديبي.

فريق عمل المشروع من هيئة البيئة في أبو ظبي والمركز الدولي للزراعة المحلية وشركة جي آر إم الدولية
الدراسات التحليلية للترية

طور المركز خلال السنوات الماضية تجهيزاته المحترفة وممارسة البسيرة في مجال تحليل التربة لدعم أبحاث التربة والزراعة والبيئة. وأصبح مختبر التربة في المركز مجهزاً بمختلف معدات تحليل عينات التربة والمياه مما يقلل من اعتماده على مخابر خارجية.

ويوفر مختبر التربة إمكانية تحليل ملوحة التربة، ومعالدة ألملاح الكربونات والجبس. ودراسة الخصائص الكيميائية لمحالل التربة (الصوديوم، البوتاسيوم، المغنيزيوم، ثالث أكسيد الكربون، حمض ثاني أكسيد الكربون، الكلور، رابع أكسيد الكربون، الحديد، الفوسفور، البلاطاسيوم، الحديد، النحاس، المنغنيز، الزئبق).

المولليدينوم، السيليكون، التيتانيوم، النيوم، الرصاص، والخصائص الفيزيائية (حجم حبيبات التربة) وحصص المركز على تجهيزات حديثة تتضمن مقياس لترشيح التربة، ومقياس لكلاس التربة، ومضواء باللحم، وجهاز مراقبة رطوبة آلي، وفرن حراري، ومقياس للنقطة الكهرائية، ومقياس للحموضة.

كما يمكن قياس ملوحة التربة باستخدام مقياس النقطة الكهرائية 38 ونظام مراقبة أي حديث لمراقبة الملوحة في الحقل. ويستخدم المركز عدداً آخر من الأجهزة تتضمن مقياس زمني للنقطة، ومسار للبيترانون، ومقياس ترشيح ثنائي للملحات، ومقياس غنولل للتوصيل الهيدرولوجي، ومقياس لرطوبة التربة.
إنتاج المحاصيل الحقلية والعلفية

اختيار الأساليب الزراعية المثلى لزيادة إنتاجية عشبين متحملين للملوحة (PMS03)

فترة المشروع: 2006-2002
الشركة: جامعة الإمارات العربية المتحدة
المصدر: أساسي

لمحات عن المشروع:
- تراوحت إنتاجية عشب الدبستيكلس من المادة الجافة بين 10 و16 طن/هكتار. وتراوحت إنتاجية عشب السبورولس بين 8.7 و16 طن/هكتار. للمرحلة الواحدة خلال العام الرابع للتجربة. وبلغ متوسط الإنتاج السنوي للمادة الجافة من عشب دبستيكلس 12 طن/هكتار للدبستيكلس و 25 طن/هكتار للسبورولس.
- كانت إنتاجية كل العشبين من المادة الجافة الأعلى عند مستوى التسميد المرتفع للسماد الثلاثي المركب المكون من 0 و 30 % و 40 % من كل من الفوسفور والبوتاسيوم. وبلغت إنتاجية الدبستيكلس 24 طن/هكتار، والسبورولس 28 طن/هكتار.
- بلغت إنتاجية الدبستيكلس من المادة الجافة حدها الأعلى عند مستوى التسميد والرفي المرتفعين، وبلغت إنتاجية السبورولس من المادة الجافة حدها الأعلى عند مستوى التسميد المرتفع والرفي المتوسط.
- قبضت محتويات النبات من المواد المعدنية (نسبة الرماد) ثابتة ضمن الحدود المقبولة بالرغم من ارتفاع ملوحة مياه الري. إذ تراوحت بين 9 و 12٪ في كلا العشبين. وارتفاع نسبة البروتين الخام بشكل ملحوظ عند زيادة مستويات الملوحة والتمسح لكل العشبين أيضاً.
- بيت النتائج تغذية الأغنام والمازغ باستخدام نسب مختلفة من العشبين مقارنة بعشب الرودس أن الأغنم والمازغ التي تحصل على نظام غذائي مكون من 70% من أي من العشبين حققت نتائج أفضل من التي تحصل على نظام غذائي تقليدي من الأغلاف أو على خليط من النوعين.

أهمية المشروع:
لا تزال دراسات جدوى واستدامة أنظمة إنتاج الأغلاف من الأعشاب غير التقليدية المتحملة للملوحة والمملحة محدودة عالمياً ونفاد تكون غير متوفرة إقليمياً.
لذلك اتبعت المركز الدولي للزراعة المحلية دراسة عشب عشب السبورولس (Sporobolus virginicus) والدبستيكلس (Distichlis spicata) في حقل تموزجي مساحته 9 دونم بطرق في نبي، وذلك بناء على الدراسات السابقة التي أثبتت محتملهما للملوحة المرتفعة وقيمتهما الغذائية وإنتاجهما المستدام وكمية حصانه معاً نما يفسح المجال للإنتاج الاقتصادي على المستوى الواسع.

حش عشب الدبستيكلس في محطة أبحاث المركز
أهداف المشروع

- تحديد إنتاجية العشبي عند مستويات الملوحة المرتفعة ومستوى الإنتاج الاقتصادي.
- تحديد مستويات الرطوبة المثلى لزيادة إنتاجيتهما والمستوى الذي يكون فيه تراكم الأراضي في النبات أقل ما يمكن.
- تحديد جرعات التسميد التي تؤدي إلى زيادة إنتاجية كل العشبي.
- تحديد القيمة الغذائية للعشب عند مستويات الملوحة والري والتنسيق المختلفة.

إنجازات المشروع في العام 2006

تم حصول الديستيكلس والسبورولوس مرتين خلال العام 2006 وذلك بعد تعديل برنامج الحصاد في العام 2005 بشكل يناسب مع نموهما في أوقات مختلفة من العام، وتراوحت إنتاجية كل العشبي بين 8 و17 طن/هكتار في كل الحفريات.

أجريت أيضاً بعض التجارب المخبرية لعينات التربة المختلفة لدراسة الخصائص الفيزيائية والكيميائية لها، كما حلت العينات الحليبية النباتية بتعابير مع مختبرات جامعة الأمارات العربية المتحدة ومؤسسات قطاع الزراعة في أبو ظبي لتحديد الجودة العالية والقيمة الغذائية للعشبي.

تعيين من البيانات المجمعة خلال سنوات التجربة أن الإنتاجية المرتفعة للمادة الجافة تحقق عند مستويات التسميد الأمثل المرتفعة للديستيكلس وعلى مستوى السبورولوس.

كما وتبين النتائج تحمل كل العشبي لمتانته المثلى للمياه المرتفعة وتزداد بالتالي إنتاجيتهما بينما تمتلئ جودتهما العالية جودة محصول الشعير الأخضر المثالي.

الشكل 5: الإنتاجية الحقلية الكلية (تن الحشوب) للمادة الجافة لعشبي السبورولوس والديستيكلس
نشر خبراء المركز نتائج هذه الدراسات بشكل مكثف في وسائل الإعلام والدوريات المتخصصة والندوات وورش العمل العلمية محلياً وإقليمياً ودولياً. كما وزع المركز نتائج الديستيكلس والسبوريلس إلى عدد من المزارعين ومراكز البحوث الزراعية الوطنية في المنطقة.

تحليل النتائج

إنتاجية المادة الجافة

بين الأشكال 5-11 إنتاجية المادة الجافة لكلا العشرين عند مستويات الملوحة والري والتسميد المختلفة حيث تتشابه بشكل عام مع إنتاجية المادة الجافة للعام 2005.

فقد ارتفعت إنتاجية الديستيكلس بزيادة مستويات الملوحة إلى حدها المتوسط الأعلى (0.05-0.60 ديسيمتر متر). ارتفعت إنتاجية السبوريلس بلغت إنتاجية السبوريلس حدها الأعلى عند مستويات الملوحة المتوسطة (0.2 ديسيمتر متر) لتصقل بذلك إلى حوالي 39.5 طن/هكتار (الشكل 5).

وتعتبر النمو في فصل الصيف (الحشة الخريفية في سبتمبر) الأعلى لكلا العشرين. كما ارتفعت إنتاجية الديستيكلس بشكل عام عند زيادة مياه مياه البحر من خلال زيادة مستوى الملوحة.

الشكل 5: تأثير مستويات الملوحة والري على إنتاجية عشب الديستيكلس من المادة الجافة

الشكل 6: تأثير مستويات الملوحة والري على إنتاجية عشب السبوريلس من المادة الجافة
كمية مياه الري عند مستويات الملوحة المنخفضة والوسطى، بينما أدت زيادة مستوى الملوحة إلى حدود أعلى إلى انخفاض الإنتاجية عند مستوى الري المرتفع الذي يعادي ضعفي متطلبات النبات المائية (الشكل 6).

وأرادت إنتاجية الديستيكلس عند زيادة مستويات الري عند كافة مستويات الملوحة (الشكل 7).

وبينت نتائج تأثير مستويات التسميد على الغلة عند مستويات الملوحة والري المختلفة (الأشكال 8-11). زيادة إنتاجية الديستيكلس بشكل واضح حتى مستوى التسميد المتوسط ولم تزداد بعد ذلك مما أختلفت مستويات الري والملوحة. وكانت إنتاجية السبروبيلس الأعلى عند مستوى التسميد المرتفع. وقد تمثلت نتائج هذا العام مع نتائج العام السابق.

التحليل الكيميائي والقيمة الغذائية

بينت التجارب الكيميائية للسنوات الثلاثة الأخيرة أن محتوى عشبي السبروبيلس والديستيكلس من الزراعة كان ضمن الحدود المعقولة حتى عند مستويات الملوحة المرتفعة (الأشكال 12 و13). مما يقلل هذين العشبيين لاستخدامهما في تغذية الحيوانات مما بلغت معدلات التغذية بخلاف تجارب تغذية الماعز في محطة أبحاث جامعة الإمارات العربية المتحدة.
For the harvest of the plants, it was shown that the dry weight of the plants increased with increasing fertilizer levels. The highest dry weight was observed at the highest fertilizer level. A similar trend was observed for the chlorophyll content of the plants. The plants that received the highest fertilizer level had the highest chlorophyll content.

The results of the experiment showed that the growth of the plants was significantly affected by the fertilizer level. The plants that received the highest fertilizer level had the highest dry weight and chlorophyll content. The results also showed that the growth of the plants was affected by the type of fertilizer used. The plants that received the organic fertilizer had higher dry weight and chlorophyll content compared to the plants that received the inorganic fertilizer.

The experiments were conducted in a randomized complete block design with three replications. The data were analyzed using analysis of variance (ANOVA) and the differences between the means were compared using the Tukey’s honestly significant difference (HSD) test. The results showed that there were significant differences between the means of the different fertilizer levels for both dry weight and chlorophyll content.

The results of this study suggest that the growth of the plants can be improved by the use of appropriate fertilizers. The results also suggest that the type of fertilizer used can affect the growth of the plants. The findings of this study can be used to improve the growth of the plants in the future.
دراسة نمو وتكتل إناث العوامي المستورة التي تتغذى على عشب السبوريولس (تجربة لمدة سنة ونصف).

تجارب التغذية
تم تراقبة الحيوانات بشكل دقيق.
- وخصوصا استهلاكها للمياه، ومعدل التغذية، وتكاثرها، وصفاتها التشريحية، وعدد آخر من المؤشرات الفيزيولوجية والكيميائية
- الحيوانية.

لم تظهر أي آثار سلبية على صحة الحيوانات في أي من التجارب المختبرية.
- كان أداء الحيوانات التي تتغذى على معدّل 70% من السبوريولس أو الديستيكلس أفضل بكثير من أداء الحيوانات في المعدلات الأخرى.
- لم يتغير معدل النمو اليومي بشكل يذكر (معامل التغير أكبر من 0.05) بين المجموعتين عند أي مرحلة من مراحل النمو.
- لم يظهر أي فرق واضح (معامل التغير أكبر من 0.05) بين وزن الأمهات عند مرحلة التوليد وبين الأشنان الوليدة في كل المجموعتين.
- استهلقت الحيوانات التي تتغذى على الأشباح المحتوية للملوحة كمية أعلاً أكثر بحوالى 20% من المجموع المعياري.
- كان التركيب الجسيمي نسبة اللمح - الدهن - العظم في الحيوانات التي تتغذى على نسبة 70% من الأشباح المحتوية للملوحة أفضل وأقل بعلاق السبوريولس، لهيكل نمو الأشنان الوليدة (الشكل17).

لم تتناقص خصوبة أو تكاثر الأغنام التي تتغذى على عشب السبوريولس (هرمونات الاستروجين والبروجسترون، معدل الاستهلاك، الولادة الطبيعية للأغنام).

الشكل 12: تأثير مستويات الملوحة والتمسيد على محتوى عشب السبوريولس للمرد.
الشكل 15: تأثير مستويات التسميد على مستويات البروتين الكلي في عشب الديسيكلس

لذلك فقد تم التوصل بعد التجارب السابقة ونتائج حش العشبين 14 مرة إلى معلومات هامة عن إنتاجية هذين العشبين عند مستويات الملوحة المرتفعة تشمل:

- الإكثار الموسع للعشبين
- تحضير الحقول
- أنظمة الري المناسبة
- إدارة موارد المياه والترية
- برامج الحش
- مستويات التسميد
- الحش وتجهيز البيئات
- معدلات التغذية وأثارها على الحيوانات
- ويتم حالياً تقييم النتائج الاقتصادية لهذه العشبين في محطة أبحاث المركز وفي حقول المزارعين في الإمارات وعمان.

الشكل 16: نمو الأغذية المحلية عند مستويات التغذية المختلفة بعشب السبوريديس (SP)
الخطة العملية للعام 2007
سوف تؤدي دراسة هذين العشرين للموسم الرابع على التوالي إلى الحصول على معلومات واسعة وغنية عن تأثير محتوى الوزن والسكيلة والري على إنتاجهما وزيادة غلتهما بشكل مستدام. سوف يتم في نهاية المشروع التوصية بطرق الإدارة المحسنة لزراعتها وزيادة إنتاجيتها في حقول المزارعين في منطقة غرب آسيا وشمال أفريقيا.

الشكل 17: نسبة اللحم والدهن والعظم عند مستويات التغذية المختلفة لعشبنى السبوريولس (SP)

الشكل 18: المعدلات الوسطية لمكونات التركيب الجسدي

الفحة الجيد لعشب السبوريولس عند مستوى الملوحة المرتفعة
تحديد الأساليب الزراعية المثلى لزيادة إنتاجية ثلاثة أنواع من الرغل عند مستويات الملوحة المرتفعة (PMS04)

فترة المشروع: 2006-2007
الشركاء: جامعة الإمارات العربية المتحدة
المصادر: أساسي

المحة عن المشروع

- كان الإنتاج الحضري الكلي للنوع Atriplex lentiformis أعلى من النوعين A. nummularia و A. halimus لمستويات الملوحة المختلفة كما في السنوات السابقة.
- تأثر الإنتاج الحضري سلبًا بزيادة كمية مياه الري. فقد تحققت الإنتاجية الأعلى التي تعادل 23 طن/هكتار عند مستوى الري المنخفض. وكانت إنتاجية النوع A. nummularia أعلى عند مستوى الري المتوسط.
- كان محتوى النبات من الرماد الأعلى في النوعين A. nummularia و A. halimus المستويات الملوحة المختلفة. وكان الأعلى عند مستوى الملوحة المتوسطة. وكان محتوى النبات من الري المنخفض عند مستوى الري المتوسط.

- بلغ محتوى النيتروجين من البروتين الكلي حوالي 2.6% وهو معدل من البروتين الكلي ما بين 50% و 70%.
- بينما كان محتوى النبات من البروتين الكلي أعلى عند مستوى الملوحة المنخفضة.

- كان أداء ونمو الحيوانات التي تغذت على الرغل فقط ضعيف للغاية كما كان متوقعاً. بينما كان أداؤها ونموها أعلى عند تغذيتهم ببعض الأطعمة التقليدية كالروضات. وكان أداء ونمو الحيوانات التي تغذت على خليطة بنسبة متوافقة من الرغل والسبورس مماثلة لمن تغذت على عشب الريض.

أهمية المشروع

يتميز نبات الرغل Atriplex بشكل متميز وقيمه الغذائية المرتفعة لتغذية الناشئة لاحتواجه على كميات مرتفعة من البروتين. ولكنها أيضاً غير مستهلك الطعام بشكل منفرد.

لاحتواجه على كمية مرتفعة من المحاصيل المعدنية، لذلك يتم حلته مع الأعشاب المحمولة للملوحة كي يؤمن للماشية وجبة مثلى ومستهلكة للطعام.

يهدف هذا المشروع (مشروع الأعشاب PMS03) إلى إنتاج أعلام مستدامة ذات مردود اقتصادي باستخدام الشجيرات المثمرة الملوحة المرتفعة.
أهداف المشروع

- تحديد غلة الأنواع الثلاثة عند مستويات الملوحة المرتفعة.
- تحديد مستوى الرعى الذي يبقى فيه الغلة مجدية اقتصادياً.
- تحديد مستوى الرعي الأمثل لزيادة الإنتاجية وتخفيف تراكم الأماكح في التربة.
- تحديد الكثافة النباتية المثلى لزيادة الإنتاجية عند مستويات الملوحة المختلفة.
- تحديد جرعات التسريع المناسبة لزيادة الإنتاجية.
- تحديد القمامة الغذائية عند مستويات الملوحة والري والتسريع المختلفة.

إنجازات المشروع في العام 2006

استخدمت خلال العام المعاملات المنظمة في السنوات السابقة وجمعت عينات من النباتات الكبرى لإجراء التحاليل المخبرية عليها بما في ذلك دراسة التركيب الكيميائي والقيمة الغذائية للنباتات. كما انتهت في العام 2006 تجارب التغذية على الحيوانات. أرسلت العينات المجمعة مرتين أسبوعياً إلى محطة بحوث جامعة الإمارات العربية المتحدة في مدينة العين لتوفرة الكمية الكافية لتجارب تغذية الأغنام والضاحية. وسجلت أوراق النباتات المجمعة في كل مرة تحديد الإنتاج الخضري السنوي الكلي لكل نوع.

تحليل النتائج

النمو والإنتاج الكلي

توضح الأشكال 19-21 نتائج تأثير مستويات الملوحة والري والكثافة النباتية المختلفة على إنتاجية أنواع الرعى الثلاثة. وكما في السنوات السابقة، كانت الإنتاجية الكلية للأنواع الأعلى بالنسبة للكمية A. lentiformis مستويات الملوحة. بينما كانت إنتاجية A. halimus النوع الأعلى عند مستوى الملوحة المرتفعة، وانتجات النوعين الآخرين الأخرى عند مستويات الملوحة المختلفة.

الشكل 19: الإنتاجية الخضري الكلية لأنواع الرعى الثلاثة عند مستويات الملوحة المختلفة

(In Arabic)
المنتوسطة التي تعادل 20

دبسی امریکی (الشکل 19).

كما كان الكثافة النباتية المرتفعة (5،000 نبتة/هکتار) الأثر في زيادة الانتاجية الخضرية لأنواع الثلاثة. وكانت زيادة إنتاجية النوع الأكبر عند زيادة A. halimus الكثافة (ثلاثة أضعاف تقريباً). بينما ثبتت زيادة إنتاجية النوعين الأخرى بين 20/50٪

الشكل 20.

وأدت زيادة مستويات الري إلى ضعف متوسطات النباتات المائية إلى تناقص الغلة (الشكل 21) وكانت الأعلى عند مستوى الري العادي والمتوسط الذي يعادل مرة ونصف من متطلبات النباتات المائية مما يعزز من نتائج السنوات السابقة أيضاً.

الجودة الغذائية

كان محتوى النبات من المعادن (التي يعتبر عنها بنسبة الرماد) مرتفعة جداً وبلغت حوالي 45٪ عند بعض معايير الملوحة والتسهيد (الشكل 22) ومقيت نسبة الرماد مرتفعة أيضاً عند معايير الري المختلفة (الشكل 23) أما محتوى النبات من البروتين الكلي (الشكل 24) فكان أقل من السنوات السابقة (حوالي 10-13٪).

لذلك تجري حالياً دراسة العوامل المسببة لهذا الاختلاف.

تجارب التغذية

استخدمت النباتات الخضراء المجمعة من أنواع الرغل الثلاثة خلال العام 2006 في تجارب تغذية عدد من أنواع الأغذية والبواضعي المحلية. واستخدمت خلطات متعددة

الشكل 21.

الإنتاجية الخضرية الكلية لأنواع الرغل الثلاثة عند مستويات الري المختلفة.
من شجيرات الرغل وعشب السبوريولس والرودس في تلك التجارب، فكانت نتائج التجارب على الأغذية والمحاصيل متشابهة. وكم كان متوقعاً، فإن أداء ونمو الحيوانات التي تغذت على الرغلاً فقط كان ضعيفاً بينما كان أداء ونمو الحيوانات التي تغذت على عشب الرودس التقليدي عادلاً جداً. وتميز أداء الحيوانات التي تغذت على حلقة متوازنة من الرغلاً والسبوريولس بمثابره لأداء ونمو الحيوانات التي تغذت على الرودس، بليها تلك التي تغذت على السبوريولس فقط (الجدول 2). وتعتبر هذه النتائج مشجعة للغاية إذ يمكن استخدام مرتجع النباتات المتاحة للملوحة كبديل عن الأعلاف التقليدية.

الجدول 2: نسبة نمو أنواع الماعز المحلية التي تتغذى على نسب مختلفة من شجيرات الرغل ونبات عشب السبوريولس

<table>
<thead>
<tr>
<th>المعاملة</th>
<th>نسب الرغلاً</th>
<th>نسب السبوريولس</th>
<th>نسب الرغلاً السبوريولس</th>
<th>الوزن الجسدي الأولي (كم)</th>
<th>الوزن الجسدي النهائي (كم)</th>
<th>زيادة في الوزن (كم)</th>
<th>نسبة الزيادة اليومية (كم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بروفس</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>10.33</td>
<td>17.85</td>
<td>7.52</td>
<td>0.46</td>
</tr>
<tr>
<td>سبوريولس</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>10.45</td>
<td>18.06</td>
<td>7.61</td>
<td>0.46</td>
</tr>
<tr>
<td>رغلاً</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>10.38</td>
<td>17.85</td>
<td>7.47</td>
<td>0.45</td>
</tr>
</tbody>
</table>

تذكر الأحرف الأبجدية بجانب القيم إلى وجود اختلاف إحصائي واضح (معالج الاختلاف > من 0.05).
الخطة العملية للعام 2007

لاستمرار في مراقبة وتقييم أداء أنواع الرغل الثلاثة عند مختلف المعاملات المطبقة.

سيتم أيضاً إجراء مزيد من تحليل الجودة العقلية خلال مراحل السنة لتوصل إلى تحديد المعاملات الأمثل عند نهاية التجربة. وسيتم أيضاً زراعة هذه الأنواع في حقول المزارعين وبرامج البحوث الزراعية الوطنية في المنطقة لتقييم أدائها على المستوى المحلي الموسع في المناطق المتميزة.

الشكل 24: محتوى البروتين لأنواع الرغل الثلاثة عند مستويات الملوحة المختلفة

يتحلل الرغل الملوحة والجاف مما يجعله أحد المحاصيل الطبيعية المثالية لمنطقة غرب آسيا وشمال أفريقيا.
القرير السنوي للمركز الدولي للزراعة الملحية للعام 2006 (١٤٢٧ هـ)

41

تطبيق أساليب الزراعة الملحية في مزرعة نموذجية بالمناطق الزراعية الشمالية من دولة الإمارات (PMS05)

فترة المشروع: ٢٠٠٣-٢٠٠٦

الشركاء: وزارة البيئة والمياه

المصدر: أساسي

أهمية المشروع

ازدادت الرغبة الزراعية المرورية في دولة الإمارات العربية المتحدة بشكل كبير خلال السنوات الثلاثين الماضية مع أنه لا يمتلك إلا عدد ضئيل من المزارعين الخبرة الكافية بأساليب الزراعة المرورية. لذلك سوف يستعرض هذا المشروع تقنيات الزراعة الملحية للمزارعين وبينهم استدامة وربحية الإنتاج النباتي في المزارع المتأثرة بمستويات متوسطة إلى مرتفعة من الملوحة، حيث ستمثل المزرعة نموذجاً لاستصلاح المزارع المتضررة بالملوحة في المنطقة.

أهداف المشروع

- تطبيق الأساليب الزراعية المتكاملة المناسبة لإدارة المزارع المتضررة بالملوحة في المناطق الزراعية الشمالية من دولة الإمارات.
- استعراض مبادئ الزراعة الملحية لإنتاج محاصيل الأعلاف التقليدية وغير التقليدية.
- دراسة ورصد مظهر المظهر الفيزيائي والكيميائي والإنتاجية للمزرعة النموذجية بما في ذلك النبات والمياه ونتائج الأعلاف خلال سنوات المشروع الأربعة.
- إشارت مزارع المنطقة والفئتين الزراعيين في تقييم المشروع وتنظيم الأيام الحقلية.

إنجازات المشروع في العام ٢٠٠٦

ابتدأ حب الزراعة عبر وصلة التحري بالجرب خلال العام ٢٠٠٤ في مزرعة غير مسئولة في إمارة رأس الخيمة التي ارتفعت ملوحة مياه الري فيها إلى حوالي ٢٠ ديسيمترات ممتر خلال العام ٢٠٠٥، ورصة عن ٢٥ ديسيمترات في العام ٢٠٠٦. ونتيجة لزيادة ملوحة مياه الري، فقد تقرر تخصيص المزرعة بالكامل لزراعة النباتات المتاحة والمتحملة للملوحة المرتفعة فقط فاستدامة المحاصيل التقليدية في التجربة كالشعر والدخان.

عدد من مزارعي إمارة رأس الخيمة وخبراء وزارة البيئة والمياه والمركز الدولي للمزرعة الملحية خلال اليوم الحضري
الثديي والذرة الرفيعة (السوري) ينشئ السورورولس والديستيكلس وشجيرات الرغب الملحية. وقد قام شب الليبيد ومحصول الشوندر (البنجر) العلقي ملوحة مياه الري المرتفعة في المزرعة إلى حد ما.

النتائج

الثديي: زرعت 38 سلالة وصنف محللي ومثورين من الليبيد وروت بمياه تراوح ملوحتها بين 20 و22 ديسيمتر ز(map). كان عموماً صنف الليبيد الأفريقي المستورد جيداً مقارنة بغيره، ثلث سلالات الأسترالية. وتبين نتائج نمو الليبيد المحلي والثديي والمثوري (Panicum turgidum) جيداً واضحاً عند مستويات الملوحة المختلفة. لذلك تم اختيار السلالات الأفضل لتوزيعها واختبارها في حقول مزارعي المنطقة.

الأغذية الملحية: رويت أشجار السورورولس والديستيكلس والباسيلام والكلاز بالرشاشات وكان نموها جيداً عند مستويات الملوحة المختلفة، ويمثل حالياً إكتئارها لاختيارها في حقول المزارعين.

الشجيرات والأشجار: كان نمو شجيرات الرغب من أنواع (Acacia amplicpes) وأشجار الأكاسيا (A. halimus) و A. numularia (Atriplex lentiformis) اكتئار في مواقع التجربة. وكانت أشجار الأكاسيا (Atriplex lentiformis) والأشجار المستدفنة واستغلال سلالات بين السلالات المزروعة. مثبت اكتئار نمو الأشجار عند ظروف تراح ملوحة مياه الري وامتصاص الري. وتتبع إنتاجية أفضل السلالات للسلاسل الجافة حوالي 3-7 طن/هكتار وإنتاجية أضعاف السلاسل حوالي 1-0 طن/هكتار. وبلغت إنتاجية البذور حوالي 11-8 طن/هكتار في أفضل السلالات. لذلك اكتئار أفضل خمس سلالات منها لإكتئارها واختيارها فيما بعد في حقول المزارعين خلال العام 2007.

الشوندر (العنقي) العلقي: زرعت 7 سلالات من الشوندر العلقي في العام 2006 حيث تراوحت إنتاجية البذور بين 01 و23 طن/هكتار بالرغم من ارتفاع ملوحة مياه الري، وكانت أصناف الذرة والأغذية والأدبيات أفضل من بقية الأصناف المستخدمة.

اللغة العلقي (Brassica) زرعت في الحقل أربعة أصناف من اللغة العلقي فتراوحت إنتاجية أفضل الأنواع المنتجة للأعلاف حوالي 10-5 طن/هكتار وأفضل الأنواع المنتجة للبذور حوالي 2-0 طن/هكتار.

خططة العمل لعام 2007

متابعة زراعة الأنواع المحتملة لمستويات الملوحة المرتفعة واكتئار وتوزيع أفضلها في السورورولس والديستيكلس وشجيرات الرغب الملحية. وسيتم أمستيا تكاليف المعاملات الزراعية المستخدمة للحفاظ على ملوحة النزه بالاعتماد على الحقول المطبوخة. كما سيتم تحضير الأفراح الملغية للمزارعين والخبراء والفنانين لتعزيزهم على الطرق الزراعية المستخدمة. وسيتم اختيار عدد من المزارع ذات مستوى ملوحة أقل لزراعتها بالمحاصيل التقليدية المحتملة للملوحة.
تطوير أصناف متحللة للملوحة من الذرة الرفيعة والدخن اللؤلؤي الملائمة

للأراضي الممتلئة (PMS15)

فترة المشروع: 2006-2007

الشركاء: المعهد الدولي لبحوث محاصيل المناطق المدارية شبه القاحلة (إكريسات)، برنامج البحوث الزراعية الوطنية في الهند وعمان والإمارات واليمن

المصادر: صندوق الأوليك للتنمية الدولية، أساسي

لمحة عن المشروع

- طور المركز الدولي للزراعة الملحية طرق إنتاج محاصيل الذرة الرفيعة والدخن اللؤلؤي (السعودية)
- الملامحة للمياه الملحية من خلال تعديل الطريقة التقليدية المستخدمة في الظروف المناخية المحلية.
- جمعت خلال العام 2006 بيانات الحصاد القردي والمنعقد لهذه المحاصيل.
- استخدمت الطريقة التقليدية في زراعة السلالات في التجربة للتوصل إلى مستويات الإنتاج المثلى واتخاذ أفضل السلالات منها.
- زرع 3 ملايين نبتة من كل محصول في الحقل فظهرت فروقات وراثية واضحة فيما بينها لتلك انتخبت أفضل عشر سلالات من كل محصول لإكثارها وإجراء مزيد من التجارب الحقلية عليها مستقبلاً.

أهمية المشروع

يعتبر تحلل المياه وسائل أولى من إنتاج المحاصيل وخصوصاً في المناطق الجافة وشبه الجافة. وتظهر الدراسات أن أكثر من 50% من الأراضي المروية في هذه المناطق قد تتأثر بالملوحة إلى حد معين مما أدى إلى هجرزارعين لملايين الهكتارات من الأراضي الزراعية التي تمتلك بالكامل. كما أن نسبة كبيرة من الأراضي معرضة للتقليل بسبب أساليب الري الخاطئة مما يهدد بفقدانها في القريب العاجل. لذلك تتضخّم الجهود العالمية للتخفيف من تزايد مستويات الملوحة من خلال تطوير طرق مستدامة لتحسين إنتاجية المحاصيل. وبالرغم من استخدام عدد من الأساليب الهندسية في معالجة مشاكل الملوحة، لكنها لم تكن عملية في معظم الأحيان. لهذا يعتبر تطوير محاصيل متحللة للملوحة الحل الأمثل والأقل تكلفة لهذه الأراضي.

يتمثل هذا المشروع المرحلة الثانية من المشروع (PMS02) الذي نفذه المركز خلال العامين 2002 و2003 ويهدف إلى تحسين الإنتاجية الزراعية في تجارب الحصاد المرتفع والاحصاء المتعدد في محطة أبحاث المركز.
الأراضي المتعلقة من المناطق الجافة وشبه الجافة في منطقة غرب آسيا وشمال أفريقيا من خلال تطوير سلالات متحملة للملوحة من الدخن اللؤلؤي والذرة الرفيعة ذات إنتاجية مرتفعة من الأعلاف والبذور.

أهداف المشروع

- اختيار السلالات الوراثية المتحملة للملوحة من الدخن اللؤلؤي والذرة الرفيعة ذات الإنتاجية المرتفعة من الأعلاف والحبوب.
- تحديد العوامل الجزيئية المؤثرة على تحمل الملوحة في النبات.
- دراسة القيمة الغذائية للسلالات المنتجية عند مستويات الملوحة المختلفة.
- تحديد الإنتاجية المتلقي للذرة الرفيعة في البيئات المتحملة في منطقة الشرق الأدنى.
- نقل تقنيات إنتاج المحاصيل إلى برامج البحوث الزراعية الوطنية والمزارعين.

إنجازات المشروع في العام 2006

زرعت 200 سلالة من الدخن اللؤلؤي ومثلها من الذرة الرفيعة لتقييمها عند ثلاثة مستويات للملوحة (3, 5, 10 ديسيلسومتر). تشمل هذه السلالات أنواع المنتجة للأعلاف أو البذور أو كليهما والتي زرعت بأسلوب الحصاد المفرد. اختبرت فيما بعد 9 سلالات من الدخن اللؤلؤي و 8 سلالات من الذرة الرفيعة لزراعةها بأسلوب الحصاد المتعدد. فحصت سلالات الدخن اللؤلؤي أربع مرات وسلالات الذرة الرفيعة ثلاث مرات. وجمعت في نهاية الموسم عينات من النبتة لإجراء التحليل المخبرية وأجريت في الوقت نفسه اختبارات لزراعة سلالات متنوعة من المحصولين في عدد من برامج البحوث الزراعية الوطنية في منطقة غرب آسيا وشمال أفريقيا.

النتائج

تجارب محطات برامج البحوث الوطنية وحقول المزارعين في دول المنطقة

زرعت خلال العام 2005 و2006 77 مئتي سلالة من سلالات الدخن اللؤلؤي والذرة الرفيعة في عمان (مواقعين)، والهند (ثلاثة مواقع)، وإيران (مواقعين) ومصر (مواقع واحد). كما زرعت في محطتي بحوث المركز وأكريسات.

عمان: بلغت إنتاجية المادة الجافة لأفضل سلالات الذرة الرفيعة المزروعة في عمان أكثر من 15 طن/hec, والانتاجية الخضروية العلفية في الحشة الواحدة أكثر من 70 طن/hec. بلغت إنتاجية الدخن اللؤلؤي للمادة الجافة حوالي 13 طن/hec، والانتاجية الخضروية العلفية أكثر من 85 طن/hec.

الهند: زرعت في اليمن 25 سلالة من كل محصول في حقل تراوح مثابرة مئات المراة الجوفية فيه. 3-11 ديسيلسومتر/م فيلقت إنتاجية المادة الجافة لأفضل سلالات الذرة
الرقيقة حوالي 30 طن/هكتار. وصلت إنتاجية الذرة الرقيقة من البذور أكثر من إنتاجية الذرة الولوي.

الآراء: زعت نفس السلالات أيضاً بمحصلة أبحاث الخلادية في الآردن فكانت إنتاجية المادة العلفية الخضراء للذرة الولوي حوالي 100 طن/هكتار في السنة الواحدة للسلاسلة Dauro Genoopool إنتاجية المادة الجافة 29 طن/هكتار. وبلغت الإنتاجية الكلية للمادة الخضراء للسلاسلة 1IP 9586 من عدة قصات Super Dan 61.1 طن/هكتار. وكانت إنتاجية السلاسلة من الذرة الرقيقة 39.2 طن/هكتار. ونتج إنتاجية السلاسلة ICSR 196 حوالي 35 طن/هكتار. وكانت إنتاجية من المادة الجافة الأعلى للسلاسلة ICMW 155 Brist السلاسلة 46 طن/هكتار. ونتج إنتاجية السلاسلة من Izraa 8.16 طن/هكتار. ونتج إنتاجية السلاسلة البذور الأفضل فيبلغ 5.7 طن/هكتار.

سورية تناقصت إنتاجية المادة الجافة للسلاسلة الذرة الولوي المزروعة في سوريا من 14.8 طن/هكتار إلى 7.16 طن/هكتار عند زيادة ملحة مياه الري، وكان إذا تناقصت نسبة النمو Super Feed سلاسلة IP 6105 IP 6106 IP 6107 6105 بباكستان: اختبر في باكستان 4 سلاسلة من الذرة الرقيقة و 28 سلاسلة من الذرة الولوي عند مستوى ملحة. ونتج إنتاجية بعض سلالات الذرة الرقيقة من المادة الخضراء 35 طن/هكتار. ونتج إنتاجية الذرة الولوي 45 طن/هكتار عند مستوى ملحة المنخفضة والمتوسطة.

يقتني تحاولت إنتاجية الخضرية للسلاسلة الذرة الولوي المزروعة في فلسطين عند مستوى ملحة تعادل 22 ديسيمسنتر/م بين 4.5 و 5 طن/هكتار.

تجارب محطة أبحاث المركز الدولي للزراعة الملحي
الذرة الولوي

تخصى اختبارات العام 2006 للذرة الولوي في مقر المركز زراعة 30 سلاسلة في تجارب الحصاد المفرد و 9 سلالات في تجارب الحصاد المتعد.
الحصاد المفرد

بينت نتائج تجارب الحصاد المفرد لسلالات الدخن اللؤلؤي أن مستوى الملوحة تأثير واضح على السلالات المختبرة بينما لا يوجد تأثير واضح لمستوى الملوحة على سلاسلها. وكان متوسط الإنتاجية الكلية من المادة الجافة (IP) 31 طن/هكتار عند مستوى الملوحة المختلفة. وتراوحت الإنتاجية الكلية للسلالات المتكررة بين 10 و 43 طن/هكتار (17 طن/هكتار وسطيًا) عند مستوى الملوحة المتوسطة، وبين 4 و 24 طن/هكتار (13 طن/هكتار وسطيًا) عند مستوى الملوحة المرتفعة. وتتتم الأشكال 25-28 إنتاجية أفضل عش سلالات عند كل مستوى ملوحة وعند مستويات الملوحة المختلفة.

الحصاد المتعدد

بينت نتائج تجارب الحصاد المتعدد لسلالات الدخن اللؤلؤي أن مستوى الملوحة تأثير واضح على السلالات المختبرة بينما لا يوجد تأثير واضح لمستوى الملوحة على سلاسلها. وكان متوسط الإنتاجية الكلية من المادة الجافة (IP) 33 طن/هكتار (كل سلالات ملوحة). وتراوحت الإنتاجية الكلية من القصات الأربع عند مستوى الملوحة المتوسطة بين 30 و 35.5 طن/هكتار، وعند مستوى الملوحة المتوسطة بين 26 و 34 طن/هكتار، وعند مستوى الملوحة المرتفعة بين 18.6 و 36 طن/هكتار. لذا يظهر بوضوح أن إنتاجية الحصاد المتعدد هي أكثر من إنتاجية الحصاد المفرد عند مستوى الملوحة نفسه. وبين السلاسل 39 إنتاجية المادة الجافة من الحصاد المتعدد للسلالات المختلفة عند كافة مستويات الملوحة.

الشكل 28: إنتاجية أفضل 10 سلالات من الدخن اللؤلؤي للمادة الجافة في تجارب الحصاد المفرد عند مستويات الملوحة المختلفة

الشكل 29: إنتاجية الدخن اللؤلؤي للمادة الجافة في تجارب الحصاد المتعدد عند مستويات الملوحة المختلفة
الزراعة الرفيعة

تضمن اختبارات العام 2006 للزراعة الرفيعة في مقر المركز زراعته 30 سلالة في تجارب الحصاد المفرد و 8 سلالات في تجارب الحصاد المتعدد.

الحصاد المفرد

بينت نتائج تجارب الحصاد المفرد لسلالات الزراعة الرفيعة أن لمستوى الملوحة تأثير واضح على السلالات المختبرة بينما لا يوجد تأثير واضح لمستوى الملوحة على سلالة بحد ذاتها. وكان متوسط الإنتاجية الكلية من المادة الباقية للسلالة الأعلى للسلالة (32 طن/هكتار) عند مستويات الملوحة المختلفة، وتساوى الإنتاجية عند مستوى الملوحة المخفض بين 13 و37 طن/هكتار، وعند مستوى الملوحة المتوسط بين 10 و31 طن/هكتار، وعند مستوى الملوحة الضعيفة بين 8 و27 طن/هكتار. وتبين الأنماط 32-35 إنتاجية المادة الجافة عند كافة مستويات الملوحة المختلفة.

الحصاد المتعدد

بينت نتائج تجارب الحصاد المتعدد لسلالات الزراعة الرفيعة أن لمستوى الملوحة تأثير واضح على السلالات المختبرة بينما لا يوجد تأثير واضح لمستوى الملوحة على سلالة بحد ذاتها. وكان متوسط الإنتاجية الكلية من المادة الجافة للسلالة الأعلى للسلالة 880 طن/هكتار عند مستويات الملوحة المختلفة. ويبين الشكل 34 إنتاجية المادة الجافة من الحصاد المتعدد للسلالات المختلفة عند كافة مستويات الملوحة.

تحليل القيمة الغذائية لبعض السلالات المختبرة

تضمن أهداف المشروع اختبارات القيمة الغذائية وتجميع الطرق الزراعية المثلى بعد أن يتم اختيار السلالات ذات الأداء الأفضل على المستوى الحقيلى. وقد أبدأ العمل على هذا منذ محدد خلال المرحلة الأولى للمشروع بسبب نفس الإمكانات المتوقعة للاستفادة من الباقية محدودة وتشمل بعض التوجيهات من اللحينية من المشروع. وساهمت رحالة ماجستير لأحد طلاب جامعة...
السلطة قابوس بسلطنة عمان في توفير معلومات هامة عن الجودة العقلية للدحنة اللؤلؤي. وتوضح الجداول 3-4 نتائج تجارب سلالات منتخبة من الدحنة اللؤلؤي خلال عامين.

يظهر من نتائج التجارب أنها ضمن الحدود المقبولة. فقد كانت نسبة الصوديوم منخفضة في سلالات اللؤلؤي المختلفة في الحقل. وتبين الأبحاث المختلفة أن معدلات الصوديوم إلى أيونات الصوديوم ومعدل أيونات الكالسيوم إلى أيونات الصوديوم تعتبر مؤشرا لتحمل النبات للضغوط التشريحي (الأسموزي) والأيوني. وبين الجداول 3 و 4 نتائج معدلات أيونات البوتاسيوم إلى أيونات الصوديوم المرتفعة في سلالات الدحنة اللؤلؤي التي اتخذت لتجاوزاتها المرتفعة. وتعبر عن الجدول 3 متوسط نسب (٪) تركيز أيونات 10 سلالات منتخبة من الدحنة اللؤلؤي (2004).

<table>
<thead>
<tr>
<th>السلالة</th>
<th>% كلاسيوم</th>
<th>% مغنيسيوم</th>
<th>% سوديوم</th>
<th>% برة صوديوم</th>
<th>% برة مغنيسيوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>IP 19586</td>
<td>11.9</td>
<td>0.19</td>
<td>1.12</td>
<td>0.06</td>
<td>1.03</td>
</tr>
<tr>
<td>IP 3616</td>
<td>11.0</td>
<td>0.18</td>
<td>1.10</td>
<td>0.09</td>
<td>1.09</td>
</tr>
<tr>
<td>ICMV 155 Brist</td>
<td>11.3</td>
<td>0.19</td>
<td>1.12</td>
<td>0.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>
الجدول 5: متوسط نسب البروتين والرماد عن الجودة العقلية للنباتات، كما كانت نسبة البروتينات مرتفعة كلما ذكر على زيادة الجودة العقلية للنباتات والتي ظهرت في سلالات الدخن اللولوي تقليدية المعروفة كالشنبر. وكلما كانت نسبة المواد المعدنية (التي يعتبر عنها نسب الرماد) أكثر في النبات كلما أدى إلى نقص استهلاك الحيوان للعنف. وبالرغم من نسبة ملوحة مياه الري المرتفعة لسلالات الدخن اللولوي لكنها حافظت على معدلات مقبولة من الرماد مماثلة للظروف غير الملحية (الجدول 5). وكانت محتوى النباتات من الألياف المعبر عنها بمستويات إزالة الألياف الأحادية والحمضية قليلة وذات مستويات المقبولة بشكل عام (الجدول 6).

الجدول 6: متوسط نسب إزالة الألياف الحياتية والحمضية في 10 سلالات من الخضرة من الدخن اللولوي (تجارب صيف 2005)

<table>
<thead>
<tr>
<th>السالنة</th>
<th>إزالة الألياف الحياتية (%)</th>
<th>إزالة الألياف الحموضية (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 19586</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>IP 3616</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>IP 6112</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>IP 22269</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>IP 19612</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>Sudan Pop III</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>ICVM 155 Brist</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>ICVM 155 Original</td>
<td>37.73</td>
<td>59.82</td>
</tr>
<tr>
<td>IP 6106</td>
<td>37.73</td>
<td>59.82</td>
</tr>
</tbody>
</table>

التقرير النهائي للمرحلة الأولى

انتمى خبراء المركز وإكريسات من إعداد التقرير النهائي للمرحلة الأولى للمشروع. (3) 2000-2003

لذلك لا يد من إجراء المزيد من التجارب على عدد أكبر من العينات التي تمثل مستويات السلامة المختلفة للوصول إلى النتائج المبررة عن العلاقة بين السلامة والنتاجية ومؤشرات القيمة الغذائية للنبات.

التنقيح بانجازات المشروع ونتائج

يعتبر الدخن اللولوي والأدرار المرتفعة من المحاصيل العقلية الهامة والملائمة لمنطقة غرب أسيا وشمال أفريقيا لما ينفعه لها ذلك يلعب دورًا هاماً في تطوير الانتاجيات الزراعية والحيوانية في المنطقة. وإن الخبر المطلوب، في كثير من المناطق المنتجة ذات الانتهائية المخفضة للمؤسسات النقدية، يتمثل في التحول لإنتاج أفل الحيوانات التي تحافظ على الانتاجية الزراعية وزيادة من دخل المزارعين من خلال الإنتاج.
المشترك للأعلاف والثروة الحيوانية. لذلك يزداد الطلب على إنتاج الأعلاف في المناطق التي تعاني من نقص مصادر المياه والتي يتوقع أن تزداد مستقبلاً بسبب زيادة الطلب على اللحوم وغيرها من المنتجات الحيوانية.

ابتدأ المركز الدولي للزراعة الملحية بتنفيذ هذا المشروع في العام 2003 لمدة ثلاث سنوات بالتعاون مع المعهد الدولي لبحث محاصيل المناطق المدارية شبه القاحلة (إكريسات) من أجل اختبار وانتقاء سلالات متصلة للملوحة من الدخن اللؤلؤي والازهار الرفيعة من بين مجموعة كبيرة من السلالات التي طورها إكريسات سابقاً. بالإضافة إلى تطوير طرق الإنتاج المحلي لهذه المحاصيل ونقلها إلى مزارع مختلفة غرب آسيا وشمال أفريقيا وعدد الدول الأسيوية.

قام المشروع باختبار أكثر من 800 سلالة من الدخن اللؤلؤي والازهار الرفيعة في حقول المركز وإكريسات عند مستويات ملحوظة مختلفة تصل إلى 15 ديسينغمز/م (12,000 جزء بالمليون). تشكل هذه السلالات أربع مجموعات مختلفة (سلالات المجموعة "ب"، عدد من الأصناف والسلالات المميزة، عدد من السلالات المحلية، عدد من السلالات الهجينة من كل المحصولين).

وقد انتخب السلالات الأفضل من كل مجموعة بعد مرحلة مكثفة من الاختبارات والتجارب الحقلية للمحصولين في محطة أبحاث المركز وإكريسات.

تراوحت إنتاجية سلالات المجموعة "ب" من المادة الجافة في تجارب المركز بين 10 و 72 غرام/نبتة، وإنتاجية السلالات المميزة بين 11 و 65 غرام/نبتة، وإنتاجية السلالات المحلية بين 7 و 116 غرام/نبتة، وإنتاجية السلالات الهجينة بين 19 و 90 غرام/نبتة.

وتراوحت إنتاجية المادة الجافة لسلالات التي تزن السطيرة بين 1 و 114 غرام/نبتة في تجارب العام 2003 وبين 2 و 70 غرام/نبتة في تجارب العام 2005. ولعبت إنتاجية المادة الجافة لسلالات الدخن اللؤلؤي حوالي 15 طن/متر، وإنتاجية سلالات الازهار الرفيعة 12 طن/متر، وتراوح نسبة البروتين الكلي للدخن اللؤلؤي بين 5 و 15% ومعدل إزالة الألياف الحمضية بين 50 و 80%، و معدل إزالة الألياف الجسمية بين 30 و 40%، ونسبة الرماد بين 17 و 16% لذا يمكن استنتاج أن كافة مسئوليات القمية الغذائية كانت جيدة حتى عند مستويات الملوحة المرتفعة.

اختيرت بالاعتماد على نتائج الاختبارات السابقة السالبة السالبة المتصلة للملوحة ذات الانتاجية المرتفعة لزراعةها في مجموعات خاصة في محطات أبحاث المركز وإكريسات وهذا من محطات برامج البحوث الزراعية الوطنية في المنطقة. فقد وعثت السلالات المحظورة على برامج البحوث الزراعية الوطنية في عدد من دول المنطقة خلال الأعوام 2000-2005 ومنها عمان واليمن، ووزعت خلال العام 2006 على الهند وإيران والأردن وباكستان وفلسطين وسوريا وتونس والإمارات لإجراء المزيد من التجارب الحقلية عليها.
كانت نتائج التجارب القلابية على محسولي الدخن اللولؤي والذرة الرفيعة في عمان واليمن مشروعة بالحصول على إنتاج أكبر من المادة المغلفة والذكور في الظروف القلابية المزارعين. وكانت استجابات سلالات الدخن اللولؤي لمستويات الملوحة المختلفة أفضل بشكل عام من الذرة الرفيعة. وكانت إنتاجية بعض سلالات المحصولين مرتفعة عند مستويات ملوحة تجاوزت 8 دبسية من/م².

بلغت إنتاجية بعض سلالات الذرة الرفيعة للمادة الخضرا فتجارب العامل 2005 في عمان حوالي 36 طن/هكتار، وتراوح إنتاجية المادة الجافة حوالي 11 طن/هكتار بالرغم من مستوى ملوحة المياه والذرة المرتفعة وتعرض المحصول لبعض الأمراض في بعض السلالات. وبلغت إنتاجية بعض سلالات من الدخن اللولؤي للمادة الخضرا حوالي 45 طن/هكتار وتأثرت إنتاجية مادة الذرة الرفيعة ببعض الأمراض. بينما بلغ المتوسط إنتاجية أفضل 6 سلالات من الذرة الرفيعة للمادة الخضرا في مزرعة السوق 45 طن/هكتار.

كانت إنتاجية سلالات الذرة الرفيعة للأنعكاس والذكور حيدة ضمن الظروف الجوية لليمن وصالحة من إنتاجية سلالات الدخن اللولؤي. وبلغ متوسط إنتاجية الذرة الرفيعة للمادة الجافة 108.5 طن/هكتار ويعتبر عامل ذرة الرفيعة في مزرعة السوق بسبب الألفات الحشرية. بينما بلغ المتوسط وزن 1000 بذرة من الذرة الرفيعة 23.17 غرام والذرة اللولؤي 14.14 غرام.

اختبر في محطة بحوث المركز الدولي للزراعة الملحة خلال الأعوام 2006-2003 العلاج الزراعية المحلى لسلالات المحصولين، كما اختبرت طريقة الزراعة للحصاد المفرد والمحصول المتعدد أيضاً. فقد اختبرت في أسلوب الحصاد المتعدد 9 سلالات من الدخن اللولؤي و 8 سلالات من الذرة الرفيعة. فظهرت اختلافات بين أساليب الحصاد حيث تراوحت إنتاجية الدخن اللولؤي للمادة الجافة بين 7 و 36 طن/هكتار بأسلوب الحصاد المفرد وبين 32 و 22 طن/هكتار بأسلوب الحصاد المتعدد. وتراوحت إنتاجية الذرة الرفيعة بين 11 و 32 طن/هكتار بأسلوب الحصاد المفرد وبين 16 و 24 طن/هكتار بأسلوب الحصاد المتعدد.

بينت اختبارات إكيرسات أن استخدام 200 ميليوم من محلول كلونيد الصوديوم هو المعدل الأقل للملوحة في تجارب الأحماض البلاستيكي. وقد تأثرت إنتاجية كلا المحصولين بمستويات الملوحة فكان تأثر الدخن اللولؤي أكثر عند مستوى الإنتاج
الجغرافي وتأثر الذرة الرفيعة أكثر عند مستوى النضج وطرح البذور. وكان مؤشر
الارتباط بين إنتاجية المادة الجافة وتحمل الملوحة إيجابياً ويعادل 0.57 في الذر
ة الرفيعة و 0.92 في الدخن اللولى. وانتُخبت بعض سلالات الذرة الرفيعة ذات
الإنتاجية المرتفعة من البذور بالرغم من أن معدل إنتاجية البذور و معدل إنتاجية
العلف كان ضعيفاً (0.33). انتخبت أيضاً بعض سلالات الدخن اللولى ذات الانتاجية
المرتفعة من البذور والأعلاف والتي بلغ معدل الارتباط فيها بين المعدلين (0.89).

ومن النتائج المميزة أن إنتاجية بعض السلالات المحسنة أو الهجينة والأصناف ذات
التفقيح الخلطي كانت مرتفعة في الظروف
المالحة. ذلك حدد بعض السلالات ذات
الإنتاجية المختلفة للبذور والأعلاف من
كلا المصايفين لدراسة العوامل الجينية
الوراثية المسؤولة فيها عن تحمي الملوحة.

أثبتت نتائج إرثيات أن معدلات إنتاجية
المادة الخضراء والأعلاف والبذور في
الظروف غير المالحة يمكن استخدامها في
تجارب اكتسابات الدخن اللولى
المزروعة في الظروف المالحة. كما بيدت
التجارب أن علامات تحمي الملوحة في
السلالات النبوية المزروعة في الدخن اللولى
والمنتجة للأعلاف والبذور في الذر
ة الرفيعة تزداد في السلالات الهجينة منها
أيضًا بالرغم من عدم قدرة تحمي السلالات
الهجينة للملوحة بنفس نسبة السلالات
الأصلية. وقد حددت بعض سلالات الذر
ة الرفيعة والدخن اللولى المتحملة للملوحة
والمنتجة للأعلاف والبذور لدراسة العوامل
الجينية الوراثية المسؤولة عن تحمي
الملوحة فيها.

ساهمت هذه الدراسات والتجارب التقليدية
في زيادة الإنتاجية الحقلية للبذور
الأعلاف لكلا المصايفين واختيار
السلالات المناسبة للإنتاج الحقل الموسع
بالإضافة إلى تعزيز أبحاث التحسين
الوراثي لهذه المحاصيل في تحمي الملوحة
بالطرق التقليدية.
يعتبر تطوير تقنيات إنتاج محصولي الدخن اللولبي والذرة الرفيعة مزيداً من الدراسات الحقلية.

بصفة عامة للتجارب الفعلية الأولى في تطوير أساليب زراعة وإنتاج محصولي الدهان اللولبي والذرة الرفيعة في البيئات المألية تتضمن اختبار السلالات المألية والمغذيات المناسبة بما فيها الكافيتا البذلية وأساليب الزراعة والتمثيلية وحماية البذور وبرامج الحصاد. لذا هذه التخصص ليست كافية حتى الآن للوصول إلى نتائج نهائية ولا بد من اختيار دول أخرى ومقاييس مختلفة في كل دولة لتجربتها.

خطة العمل للعام 2007

سوف تركز المرحلة الثانية من المشروع على:

- تحديد السلالات الأكثر إنتاجية من الدهان اللولبي والذرة الرفيعة (5 سلالات من كل منهما) واتخاذها بشكل مستمر في محطات أبحاث المركز وإنجازات وبرامج تطوير المحصول.
- تطوير أساليب الإنتاج الطفيلي للمحتوي في البيئات المألية.
- نقل نتائج البحوث إلى برامج البحوث الزراعية الوطنية والمزارعين في الدول المستفيدة من المشروع.
- زيادة عدد المزارعين المستفيدين من الأساليب الزراعية المطورة.
- دراسة القيام الزراعية للسلالات المتألقة للملحية ودراسة آثار تغييرها عند مستويات الملوحة المختلفة.
- التوسع في إنتاج البذور على مستوى الدول.
- تطوير الكوايد البشرية لبرامج البحوث الزراعية الوطنية وتأهيلهم لزراعة هذه المحاصيل وإكتشافها وإنتاج الأعلاف منها.
تطوير المستدام للأعلاف المتجدة للملوحة لإنتاج الأغنام والماعز (16)

فترة المشروع: 2007-2010

الشركاء: جامعة الإمارات العربية المتحدة

المصادر: أساسي

أهمية المشروع

يهدف المشروع إلى الإنتاج المستدام للأعلاف والماعز من خلال إدخال أنواع متنوعة من النباتات المتحملة للملوحة لتوليد كميات النباتات المتواجدة. يتضمن العمل لتحقيق هذا الهدف إلى ركز المرحلة الأولى. وتركز المرحلة الثانية على أداء تنويع محليين من النباتات (Sporobolus virginicus) والهيجرة. أنواع من الأعلاف، مثل انخفاض تكاليف الإنتاج بشكل ملحوظ.

يتوقع أن يؤدي هذا المشروع إلى التوصل إلى تخفيف تكاليف الإنتاج للأعلاف الخاصة بتغذية الأغنام والماعز. كما سوف تساعد النتائج في تحديث الأسس المحلية المنتجة والتأكد منها، حيث يمكن تطوير أنظمة إنتاج زراعية متنوعة من النباتات.

النتائج الموقعة

المرحلة الأولى

- الإنتاج المستدام للأعلاف واعتماد النباتات المتحملة للملوحة الهامشية كال biênاء الماء، وتربة المحمولة والأراضي الساحلية غير المستغلة.
- زيادة مصادر الأعلاف لغذية الأغنام والماعز.
- توفير موارد المياه العذبة المستخدمة في إنتاج الأعلاف.
- تحسين الظروف البيئية في المناطق غير المنتجة.
- استخدام إنتاج الزراعية المحلية.

المرحلة الثانية

- تخفيف تكاليف الإنتاج من خلال إدخال نباتات محملة للملوحة لإنتاج الأعلاف بدلاً من زرع مشكلات نباتات الرطبات.
- حفظ سلالات الأعلاف المحلية المتأهلة في البيئات المحلية مما يساهم في الاستغلال الأمثل للموارد المتوفرة من الأراضي والمياه والحيوانات.

(PMS16)
أهداف المشروع

يتمثل الهدف العام لهذا المشروع البحثي في تطوير أعلاف متحملة للملوحة وتربيه الأغنام والمااع بطريقة مستدامة في المنطقة الساحلية من دول الخليج العربي.

بالإضافة إلى:

- تطوير أنظمة إنتاج مستدامة للأعلاف المتحملة للملوحة منخفضة التكاليف باستخدام الأراضي الهاشمية والموارد المائية.
- تطوير أنظمة إنتاج مستدامة للأغنام والمااع التي تفتت على الأعلاف المتحملة للملوحة في المنطقة.

مراحل العمل في المشروع

المرحلة الأولى

التجارب 1-2 تجربة الإنتاجية المثلى عند مستويات الملوحة المرتفعة لعشبي السبورولوس (Sporobolus virgincus) والديستيلسيس (Distichlis spicata) والصقور (A. halimus, A. nummularia, Atriplex lentiformis) أنواع من شجيرات الرغل.

الأهداف

- تحديد إنتاجية كل نوع عند مستويات الملوحة المرتفعة، وتحديد المستوى الذي يبقى فيه الإنتاجية مجدية اقتصادياً.
- تحديد مستويات الري المثلى لزيادة إنتاجية كل نوع، وتحديد المستوى الذي يكون فيه تراكم الأملاح في النبات أقل ما يمكن.
- تحديد جرعة التسقيف المثلى لزيادة الإنتاجية.
- تحديد القيمة الغذائية لكل نوع عند مستويات الملوحة والري والتسقيف المختلفة.

يتطلب تغذية الأغنام والماع إنتاجاً مستدامة للأعلاف في البيئات المالحة
المراجعة الثانية

التجربة 1 دراسة نمو وأداء نوعين من الأغذية التي تتغذى على تبن عشب السبوروليس المريزي.

الهدف

- تقييم آثار النظام الغذائي المكون من نسب مختلفة من تبن عشب السبوروليس على أداء نوعين من الأغذية (محلي ومستورد).

التجربة 2 تحديد نسب الزيادة في الوزن والنمو الجسدي وتقليل الأغذية للغذاء المكون من نسب مختلفة من تبن عشب السبوروليس المريزي بالبيئة الملاحية.

الهدف

- تقييم آثار النظام الغذائي المكون من نسب مختلفة من تبن عشب السبوروليس على نمو ثلاثة أنواع من الأغذية (أحدهم مستورد).

التجربة 3 تحديد نسب الزيادة في الوزن والنمو الجسدي للماعز التي تتغذى على نسب مختلفة من تبن عشب السبوروليس المريزي بالبيئة الملاحية.

الهدف

- تقييم آثار النظام الغذائي المكون من نسب مختلفة من تبن عشب السبوروليس على نمو ثلاثة أنواع من الأغذية (محلي ومستورد).

التجربة 4 أداء الأغذية المحلية التي تتغذى على شحيرات الرغل المريزي بالبيئة الملاحية.

الهدف

- تقييم آثار النظام الغذائي المكون من نسب مختلفة من شجيرات الرغل على إنتاجية وكفاءة الأغذية المحلية.

إنجازات المشروع في العام 2006

- يعرض المشروع بين PMS03 و PMS04 (ص 29-40) نتائج:

- وانجازات العمل في المشروع.
اختبار الغلة وتحمل الملوحة لأصناف وسلالات الشعر (PMS17)

فترة المشروع: 2003 - 2007
الشركاء: المركز الدولي للبحوث الزراعية في المناطق الجافة (إيكاردا)
المصادر: إيكاردا, أساسي

لمحات عن المشروع

نفذ المركز ثلاث تجارب مختلفة تم فيها دراسة تحمل 100 سلالة من الشعر للملوحة. تتضمن:
- 25 سلالة منبجية سابقاً من مجموعة من السلالات المحلية من عمان وبعض السلالات من إيكاردا.
- 25 سلالة وصف نتائج 64 صنف من منطقة غرب آسيا وشمال أفريقيا.
- 600 سلالة تمثل 5 مجموعات زراعية طورها برنامج إيكاردا لتربية الشعر.

بينت النتائج وجود اختلافات واسعة في إنتاجيتها. فقد تراوحت إنتاجية المادة الجافة في النموية الثانية التي تتضمن 75 سلالة بين 33 و 212 غرام/نبات. كما ظهرت اختلافات كبيرة بين المجموعات المختلفة للسلالات وبين سلالات المجموعة نفسها.

أهمية المشروع

المحصول الرابع في أهميته عالمياً من بين المحاصيل الحبوب كما أنه من بين أكثر المحاصيل التقليدية تحملاً للملوحة. وبناءً على الدراسات السابقة تحمل بعض سلالاته مستويات مرتفعة من الملوحة مما يتطلب دراستها في بيئاتها المحلية لتحديد خواصها. ويعتبر الشعر مصدرًا لغذاء البشر ويدخل في تركيب عدد من الاصناف الغذائية بالإضافة إلى أهميته في تغذية الحيوانات المتنوعة في البيئات الجافة. وقد ركزت البحوث مؤخرًا على تحسين إنتاجية الشعر في المناطق التي تشكل الملوحة أحد العوائق البيئية فيها.

حصل المركز الدولي للبحوث الزراعية من المركز الدولي للبحوث الزراعية في المناطق الجافة (إيكاردا) على مجموعة كبيرة من سلالات الشعر من مختلف المناطق لاختبارها في الظروف المحلية والظروف المحكمة في محطة أبحاث المركز.

يعتبر الشعر من المحاصيل مرتفعة الإنتاجية والملاءمة للبيئات المئات.
أهداف المشروع

- اختيار تحمل مجموعات من خلايا من سلالات الشعير للملوحة من مختلف المصادر.
- اتخاذ سلالات الملونة للملوحة لإجراء التجارب الحقلية الموسعة عليها في دولة الإمارات وبعض دول منطقه غرب آسيا وشمال أفريقيا.
- توفير البرامج البحثية في المنطقة بكميات كافية من البذور المحسنة لسلالات الشعير الملونة للملوحة لإجراء التجارب الحقلية.
- توفير المعلومات حول تحمل سلالات الشعير للملوحة لأجزاء المزيد من أبحاث تربوية اللحابات مما يساعد في تحسين تحمل الشعير للملوحة.

إنجازات المشروع في العام 2006

لفذ المركزة خلال العام 2006 ثلاث تجارب متنوعة على سلالات الشعير تضمنت دراسة 25 سلالة في الظروف الحقلية عند مستويات ملونة 15, 20, 25 ديسيمتر/م. وتضمنت التجربة الثانية دراسة 75 سلالة منها 65 صنف من إيكاردا و11 سلالة من مجموعة المركز البرازيلي زرعت جميعها في أصص برازيلية ضمن ظروف مأمونة عند مستويات ملونة 15, 20, 25 ديسيمتر/م. وتضمنت التجربة الثالثة دراسة خمس مجموعات وراثية محسنة من برنامج إيكاردا لتربوية الشعير زرعت في أصص برازيلية ضمن ظروف مأمونة عند مستويات ملونة 15 ديسيمتر/م.

النتائج

التجربة الأولى

حصل المركز على بذور التجربة من محصول المواضيع السابقة والتي مثلت 25 سلالة من برنامج إيكاردا لتربية الشعير وعشر سلالات الشعير الوراثية المحلية. زرعت هذه البذور في أواخر العام 2005 في الظروف الحقلية عند مستويات ملونة 15, 20, 25 ديسيمتر/م. بلغ متوسط الإنتاجية الحقلية للمادة الجافة 13.4 طن/هكتار لمستويات الملونة المختلفة. ونفتضت الإنتاجية عند زيادة مستوي الملونة تراوحت إنتاجية أفضل عشر سلالات بين 4 و5 طن/هكتار (الشكل 24) وكان من الواضح أن الإنتاجية للسلاسل عالية الأداء كان.
جِيِداً حِتَى عنَد مَسْتَوى مَلْوَحة ١٥ دِيسِيسيمنز/م
(الشَّكْل ٣٥). تَقُراوِحت إِنَتِاجٌة المَادَة الجَافة بَينَ ٣٨ و٤٣ مِلْم. هُكَان.

أكْتَمِلت التجِربة خِلال الْعَام وسِتِمِّع انتِخاب السِّلالات
الوَاعِدة لِإِكْتِشاَفِها في مِحة أُحْبَاث المَركَز وِمِجْمَع
أُحْبَاث برَامِج البَحُوث الزَّراعِية الوَطَنِيَّة. كَمَا سَوَّف
تَسْتَخْدِم كِسَالَات مُعَبَّارَة فِي تَجَرُبَة الْمَوْاسِل الْقَادِمَة.

التجاربة الثانِيَة

تَضْمِنت التجِربة ٧٥ سَلَالة مِن الشَّعْرِ مِنْهَا ٣٤ صَنِف
مَجموعَة الشَّعْرِ لِمَسْتَوى غِرْب أَسْبَا وشَمال أَفْرِيقِية حُصُل
عَلَى المَركَز مِن بِرامِج إِيكَارِدا لِتَحْوِيل الشَّعْرِ. كَمَا
تَضْمِنت التجِربة ٠٠٠ صَنْفٌ مِن مَسْتَوى مَلْوَحة
مَجموعَة المَركَز المَنتَخِبَة لِسَتَخْدِمُها كِسَالَات مُعَبَّارَة. زِرَعَت الْبَذْرَ في أَصْص
بِلاَسْتِيكيَّة عَنَد مَسْتَوى مَلْوَحة ١٥٠،١١٠،١٠٠ دِيسِيسيمنز/م. وَسُجِّلَت بِيَاتِنُ النَّمو
والإِنَتِاجَة وُجِدَ أنَّ الْبَذْرَ المَتَخَفْضَة. بَينَ النَّتِجَاءات مِن انتِجاه عَنْد مَسْتَوى
المَلْوَحة، فِيَّلَتَ المَعْدِل الْوُسْطَي لِإِنَتِاجٌة المَادَة الجَافة ٩٣.٢ غَرام لِمَسْتَوى المَلْوَحة
المَتَخَفْضَة. وَلَبَقَ ١٣٠ غَرام عَنَد مَسْتَوى المَلْوَحة المَتَخَفْضَة. وَتَقُراوِحت إِنَتِاجٌة المَادَة الجَافة لِلِسَّلَالَات عَالِيَة الْأَدَاء
بَينَ ١٤٧ و١٤١ غَرام (الشَّكْل ٣٦). وَكَانَت إِنَتِاجٌة أَفْضَل ٥ سَلَالَات مُقْبُولَة عَنَد
مَسْتَوى مَلْوَحة ١٥ دِيسِيسيمنز/م (الشَّكْل ٣٧).

التجاربة الثامِنَة

تَضْمِنت التجِربة زَراَعَة زَروَات مِرْوَاخ حَصَل عَلَى المَركَز مِن إِيكَارِدا:٥
١. مَجموعَة الْمَراقبة الْدِوليَّة لِلشَّعْرِ الخاصَّة
(IBON-CAC)
٢. مَجموعَة التَّهجِين إِلَيا الْدِوليَّة الشَّتوية لِلشَّعْر
(IBC-W)
٣. مَجموعَة التَّهجِين إِلَيا الْدِوليَّة الْرَبيعِيَّة لِلشَّعْر
(IBC-S)
٤. مَجموعَة الْمَراقبة الْدِوليَّة لِلشَّعْرِ الخاصَّة
بِالْمَنْطَقَات ذات النَّهَانَة المِعْطَل وقَفْلٌ
الأَمْطَار
(İBON-LRA-M)
٥. مَجموعَة الْمَراقبة الْدِوليَّة لِلشَّعْرِ الخاصَّة
بِالْمَنْطَقَات مَتَوَسْطَاة الأَمْطَار
(İBON-MRA)
الشكل 38: اختلافات إنتاجية المادة الجافة لسلالات مجموعة IBON-CAC عند مستوى ملوحة يعادل 10 ديسبيسيمنز/م المختبرة في مقر المركز.

الشكل 39: اختلافات إنتاجية المادة الجافة لسلالات مجموعة IBC-W عند مستوى ملوحة يعادل 10 ديسبيسيمنز/م المختبرة في مقر المركز.

يعتبر الشعير من المحاصيل المتحملة للملوحة المرتفعة.

تبيّن تجارب الشعير في مقر المركز اختلافات واضحة بين السلالات في تحمل الملوحة.

بلغ عدد سلالات المجموعة الأولى 116 سلالة، والمجموعة الثانية 129 سلالة، والمجموعة الثالثة 130 سلالة، والمجموعة الرابعة 110 سلالات، والمجموعة الخامسة 135 سلالة. زرعت البذور في أقصى بيئات ثباتية عند مستوى ملوحة 10 ديسبيسيمنز/م فقط وسجلت بيانات النمو والانتاجية وغلة البذور المختلفة.

بينت نتائج التجربتين الثانية والثالثة اختلافات واضحة في إنتاجية المادة الجافة وغلة البذور، لذلك تعتبر هذه البيانات ذات أهمية كبيرة لأنها سوف تشكل الأساس لاختيار السلالات المناسبة. وتبين الأشكال 38-39 إنتاجية المادة الجافة لمجموعات التجربة الثالثة والتي تظهر الاختلافات الواضحة فيما بينها. وقد انتخبت 25% من السلالات عالية الأداء من كل مجموعة لاستخدامها في التجارب القادمة عند مستويات الملوحة المختلفة.
الشكل 61: اختلافات الإنتاجية المادية الجافة لسلالات مجموعة IBON-LRA-M عند مستوى ملوحة يعادل 10 دبسيمتر/م المختبرة في مقر المركز.

الشكل 62: اختلافات الإنتاجية المادية الجافة لسلالات مجموعة IBON-MRA عند مستوى ملوحة يعادل 10 دبسيمتر/م المختبرة في مقر المركز.

خطة العمل للعام 2007

سوف تستخدم البذور الناتجة من تجارب العام 2006 في تجارب العام 2007 حيث ستستمر التجربة الأولى في انتخاب السلالات عالية الأداء، وسيتم اختبار السلالات ذات الإنتاجية المرتفعة للبذور والمادة الجافة من التجربتين الثانية والثالثة عند ثلاثة مستويات ملوحة. وسيتم إنتاج كمية كافية من البذور للاختبار في عدد من دول منطقة غرب أسيا وشمال أفريقيا وسيتم جمع عينات من الأنسجة النباتية للتحليل وتقدير جودتها العلمية.

تجاب الشعير في الأصد البلاستيكية في مقر المركز.
تقييم تحمل الملوحة والغلة العلفية لأصناف من الشوندر واللفت العلفية (18)

فترة المشروع: 2003-2007
المصدر: أساسي

لمحات عن المشروع

- اختبر المركز 2 أصناف تجارية من الشوندر (البنجر) و 4 أصناف من لفت العلفية لدراسة إنتاجيتها عند مستويات الملوحة المختلفة مما يوفر معلومات قيمة عن تحمل هذه الأنواع للملوحة لنقلها إلى برامج البحوث الزراعية الوطنية.
- تميز الصفن أبوودو بانسحابه المرتفع من المادة الجافة من بقية الأصناف. وكانت إنتاجية المادة العلفية لدرنات أصناف الشوندر (0.81 طن/هكتار) أعلى من إنتاجية الأوراق. وكان متوسط إنتاجية أصناف اللفت للكافة مستويات الملوحة (2.4 طن/هكتار) وتميز الصفن عيون بانسحابه المرتفع (2.6 طن/هكتار) مقاومة مع بقية الأصناف. وكان متوسط إنتاجية أوراق أصناف اللفت (3.8 طن/هكتار) أعلى بكثير من إنتاجية الوراثات (0.8 طن/هكتار).
- للملوحة تأثير كبير على إنتاجية الأوراق والدرنات في أصناف الشوندر واللفت العلفية. وبالرغم من تناقص الإنتاجية عند زيادة مستويات الملوحة لكن التجربة حددت بعض الأصناف ذات الإنتاجية الجيدة حتى عند مستويات ملوحة تعاود 15 دبسبرينتر/م².

أهمية المشروع

تتراكم الملوحة بشكل طبيعي في المناطق الجافة وشبه الجافة. وتشكل المشاكل الناجمة عن ملوحة التربة عندما تعرقل مستويات المياه الجوفية المرتفعة نمو جذور النباتات فتتركم الألماح حولها. وتعتبر الزراعة الملحية المنهج البديل للاستخدام الفعال للتربة الممتلئة وتتضمن تقنياتها زراعة الأنواع والأصناف النباتية المتحملة للملوحة بطبيعتها الوراثية. كما تتضمن انتقاء واتخاذ الأنواع والأصناف النباتية المحلية أو المميزة لزراعةها في المناطق الممتلئة.

يعتبر الشوندر واللفت العلفين من المحاصيل الشتوية واسعة الانتشار لنموها السريع، وإنتاجيتها المرتفعة. وتحمليهما درجات الحرارة المنخفضة والطبيعية لذا تعتبر البدائل الأمثل لإنتاج الألفا في فصل الشتاء. تميز اللفت العلفي بسهولة هضم مادة الجافة (85-90%) مقاومة بالفصة (70%) ومحات الأماكن من بعض الأقلام المعدنية وغناه بالبروتين.

تجارب الشوندر العلفي في مزار المركز
أهداف المشروع

• تقديم تحمل بعض أصناف الشوندر واللفت العضلي للملوحة.
• توفير كميات كافية من هذه الأصناف لبرامج البحوث الزراعية الوطنية.
• توفير معلومات عن تحمل هذه الأصناف للملوحة لتوزيعها على مراكز الأبحاث.

إنجازات المشروع في العام 2006

حصل المركز على بدور سبعة أصناف من الشوندر العضلي وأربعة أصناف من اللفت العضلي من عدة شركات تجارية عالمية وزرعت في الحقل وروس بالأسلوب التنقيط عند مستويات ملوحة 15، 10، 5 ديسيمتر/م لاختبار تحملها للملوحة.

النتائج

الشوندر العضلي

سجلت بيانات النمو الهامة للكافة أصناف المزروعة حيث تراوحت النتائج العالية لأوراق النبات
لتصنيف أداجيو بين 2 طن/هكتار عند مستوى
الملوحة المنخفضة و 1.4 طن/هكتار عند مستوى
الملوحة المتوسطة (الشكل 43). تميز الشكل دانا
بإنتاجية الملوحة مقارنة بغيره عند مستوى
الملوحة المرتفعة. وكان لمستوى الملوحة المتوسطة
(10 ديسيمتر/م) التأثير الأقل على تناقص
الإنتاجية، بينما تناقصت النتائج أكثر من 50%
عند مستوى الملوحة المرتفعة في معظم الأصناف.

اختفت إنتاجية المادة الخضراء لأوراق وردانات
الشوندر العضلي بين 15 و 11.5 طن/هكتار عند
مستوى الملوحة المنخفضة و بين 14 و 4 طن/هكتار عند
مستوى الملوحة المتوسطة (الشكل 44). و تناقصت
إنتاجية الأصناف دانا، أداجيو، بلزي الأفضل عند مستويات الملوحة المنخفضة
وذلك عند مستوى الملوحة المختلفة
(الشكل 45). و بالرغم من اختلاف استجابة معظم
أصناف الشوندر العضلي للملوحة لكن الترجمة
تمكنت من تحديد الأصناف ذات الإنتاجية المقبولة
الشكل 45: الإنتاجية الكلبية للمادة الجافة لأصناف الشودر العلفي عند كافات مستويات الملحوظة المختلفة

 حتى عند مستويات الملحوظة المرتفعة. وقد حصل المركز على معلومات عن إنتاجية نفس هذه الأصناف من مواقع أخرى ذات إنتاجية مرتفعة بسبب زيادة الكثافة النباتية.

 اللغة العلفي

 تضمنت الأصناف المزروعة أصنافاً منتجة للألاف وأصنافاً منتجة للألاف والبذر معاً. فتميز الصفائف هويسون وانتشراف بإنتاجيتها المرتفعة في البيئات المالحة وغير المالحة حيث تراوحت إنتاجيتها من المادة الجافة بين 3 طن/هكتار عند مستوى الملحوظة المرتفعة و13 طن/هكتار عند مستوى الملحوظة المنخفضة (الشكل 47). ولم يستخدم في هذه المرحلة أصول الحصاد المتعدد بل سوف يستخدم في مراحل لاحقة.

 خطة العمل للعام 2007

 حصل المركز خلال العام 2006 على بذور أصناف أخرى من الشودر واللفت العلفني من الدنمارك وأستراليا والصين وسوف تزرع في محاور أبحاث المركز وبعض محطات البحوث الزراعية الشريكة في الدول الأخرى لتقييم إنتاجيتها وحلها للملحوظة.

 وسوف تساهم التجارب في المواقع المختلفة في توفير معلومات هامة عن عدم أصناف الشودر واللفت العلفي للملحوظة لتقديم التوصيات الخاصة بالطرق المثلى لزراعتها في البيئات المختلفة.
اختبار تحمل مجموعة كبيرة من عشب الليبيد للملوحة (19)

فترة المشروع: 2003 - 2006
المصدر: أساسي

لمحات عن المشروع
اختبر المركز عن ثلاثة مستويات ملوحة: 40 سلالة من عشب الليبيد تمثل مجموعة من مجموعة سابقة تضم 120 سلالة اختبرها المركز في السنوات السابقة. وقد حصدت هذه السلالات مرتين في العام 2006 وسجلت بيانات نموها حيث ظهرت اختلافات وراثية واضحة فيما بينها. لكنه يمكن اتخاذ بعض السلالات ذات الغلة المقبولة حتى عند مستوى ملوحة بعقول 20 ديسيمترز/م².

أهمية المشروع
يعتبر إدخال أنواع نباتية جديدة لاستخدامها في إنتاج الأعلاف أمرًا ضرورياً لتكون القاعدة الزراعية وتحقيق استدامة الأنظمة البيئية خاصة في المناطق الجافة وشبه الجافة التي تتمتع الظروف القاسية فيها في إنتاج كميات كبيرة من المحاصيل. وتتمثل الملوحة العامل الحيوي الأساسي الذي يحد من إنتاجية تلك المناطق لذلك اعتمد من تقييم وانتخاب مجموعات وراثية نباتية جديدة متحملة للملوحة قادرة على التأقلم والانتاجية في الأراضي الجافة.

أهداف المشروع
• تقييم تحمل سلالات الليبيد (Cenchrus ciliaris) للملوحة.
• تقييم الجودة العلفية لهذه السلالات في الظروف المحلية.
• إ;<اكر وتوزيع بذور سلالات الليبيد إلى برامج البحوث الزراعية الوطنية في منطقه غرب آسيا وشمال أفريقيا.
• تحديد الأساليب الزراعية المثلى لزراعة الليبيد في دولة الإمارات والمفقاط ذات البنيات المشابهة.
• تجميع المعلومات المتعلقة بإنتاج الليبيد ونشرها.

إنجازات المشروع في العام 2006
زرعت في حقول محاكاة أعشاب المركز 40 سلالة من عشب الليبيد عند مستويات ملوحة تعادل 20، 14 و12 ديسيمترز/م² وحصدت مرتين خلال العام. وكانت هذه السلالات قد اختبرت من مجموعة تضم 120 سلالة اختبرها المركز في السنوات السابقة. كما جمعت خلال العام عينات من التربة لمراقبة مستويات الملوحة في منطقة الجذور وتقييم تأثير ملوحة مياه تجارب الليبيد في محطة أبحاث المركز.
الري على تغيير الخواص الكيميائية والفيزيائية للترية. بلغ متوسط إنتاجية جميع السلالات عند كافة مستويات الملوحة 11.7 طن/hec. وتراوح ملاحظة تناقص الإنتاجية عند زيادة الملوحة. كما كانت إنتاجية الحصاد الأول (12 طن/hec) أعلى من إنتاجية الحصاد الثاني (10 طن/hec).

النتائج

بين التجارب أيضاً أن إنتاجية بعض السلالات كانت جيدة عند مستويات الملوحة المختلفة لذلك ستركز تجارب العام 2007 على اختبار تأثير الحصاد المعتد على الإنتاجية. وبين الشكل 49 إنتاجية أفضل 10 سلالات عند مستويات الملوحة المختلفة. وكما كان متوقعاً فإن السلالات ذات الإنتاجية المرتفعة عند مستوى الملوحة المنخفضة كانت إنتاجيتها قليلة عند مستوى الملوحة المرتفعة (Grif 1639). وبالرغم من أن إنتاجية السلالات PI 365650 و PI 22501 و PI 409174 و PI 225583 و PI 161633 كانت أقل من إنتاجية سلالة Grif 1639 عند مستوى الملوحة المنخفضة لكن إنتاجيتها كانت مقبلة عند تزويج مستويات الملوحة. وسوف تبين النتائج في السنوات القادمة تأثير تراكم الملوحة على مرات الحصاد.

خططة العمل للعام 2007

متابعة التجربة وجمع بيانات النمو والتعاملات الزراعية المستخدمة وتعديل مواضع وعدد مرات الحصاد لتحقيق الإنتاجية المطلقة ومقارنها مع تجارب الدول الأخرى. ستم أيضاً تحليل العنب النباتية المجمعة مخبرياً لتحديد الخواص الكيميائية والجودة العلفية لها.
توفر مصادر المياه العذبة من خلال إنتاج الأغلاف المحمولة للملوحة في الأراضي الهامة وواقة في منطقة غرب آسيا وشمال أفريقيا – الفرصة لتحسين دخول المزارعين المتنامين (PMS27)

فترة المشروع: 2004-2008
الشركاء: الأردن، عمان، باكستان، فلسطين، سوريا، تونس، الإمارات
المصادر: الصندوق الدولي للتنمية الزراعية (إيفاد)، الصندوق العربي للإيصال الاجتماعي، وصندوق الأوبك للتنمية الدولية، برامج البحوث الزراعية المحلية، والدول المشاركة، أساسي

لمحة عن المشروع

يساهم هذا المشروع في زيادة إنتاجية الثروة الحيوانية في الدول النامية والأقل نمواً مما يعكس على تحسين مستوى معيشة الأفراد وتحقيق أربعة أهداف من أهداف التنمية الإنسانية.

أهمية المشروع

مول الصندوق الدولي للتنمية الزراعية (إيفاد) أنظمة المشروع في نهاية العام 2004 بـ350 مليون دولار مالياً. وتظن أن المشروع بالإضافة إلى تسهيل التشغيل، ساهم المشروع في زيادة الإنتاج الاجتماعي، وساهم الصندوق العربي للإيصال الاجتماعي في إنجاز الأغلاف المحمولة في جامعة Illinois.

أهداف المشروع

يهدف هذا المشروع إلى تحسين مستوى معيشة بيكيني، وزيادة دخل المزارعين (الذكور والإناث) الذين يقطنون في المناطق الريفية وواقة وفعالة في مشروع المياه المتنامين.

ويساء هذا المشروع في زيادة إنتاجية الثروة الحيوانية في الدول النامية والأقل نمواً، مما يعكس على تحسين مستوى معيشة الأفراد كما يحقق أربعة أهداف من أهداف التنمية الإنسانية:

- هدف التنمية الإنساني الأول: استثمار موارد الفقر والمجاعة الحادة.
- هدف التنمية الإنساني الثاني: تعزيز المشاركة بين الجنسين وتوزيع دور المرأة.
- هدف التنمية الإنساني السابع: تحقيق الاستدامة البيئية.
- هدف التنمية الإنساني الثامن: تطوير الشراكات العالمية لتحقيق التنمية.
ويرتكز هذا المشروع الذي يعتبر أكبر مشاريع المركز على ثلاثة مبادئ متكاملة:

- زيادة الإنتاجية العقلية والاستخدام المستدام لموارد المياه المالحة غير المستغذة.
- تكامل استخدام المياه المالحة مع الاستراتيجية الكلية للإدارة الحقلية المستدامة في المناطق الجافة وشبه الجافة.
- تطوير الكوادر البشرية في برامج البحوث الزراعية الوطنية في دول المشروع.

إنجازات المشروع في العام 2006

إدارة المشروع

عقد اجتماع اللجانتين التوجيهية والفنية الأول في دبي خلال العام 2005 حيث أعدت خطة العمل والميزانية الخاصة بكل دولة بموافقة أعضاء اللجانتين. وقعت تلك الاجتماعات أيضاً اتفاقيات التعاون الفني بين المركز والجهات المشاركية.

وعقد اجتماع اللجانتين التوجيهية والفنية في دبي خلال شهر فبراير 2006 بهدف:

1. مناقشة إنجازات كل دولة خلال العام الأول وتحديد عوائق تنفيذ خطة العمل الموضوعية حيث حققت جميع الدول المشاركة تقديراً ملحوظاً في إنجاز الأهداف الموضوعية والتي من ضمنها:

- تأسيس مواقع التجارب في محطات أبحاث برامج البحوث الزراعية الوطنية لزراعتها بالألفون المتحملة للمالحة وتطبيق الأساليب الزراعية المبتكرة والمنطقية.
- تجربة زراعة الألفون المتحملة للمالحة باستخدام مناهج الزراعة المحلية في حقق أهداف المزارعين على الأقل.

- جمع المعلومات اللازمة عن تنفيذ العمل.

- تحضير خطة عمل وميزانية السنة الثانية.

تنفيذ المشروع

ابتدأ العمل بالمشروع في كافة الدول المشاركة بعد عقد اجتماع اللجانتين التوجيهية والفنية وتحويل المركز لمنح المقدمة إلى البرنامج الوطني للمشاركة حسب اتفاقيات التعاون الثنائي الموقعة لتنفيذ خطة العمل. وقد حصل أعضاء اللجانتين الفنية (فوق) والتوجيهية (تحت) خلال اجتماعهم في مقر المركز خلال شهر فبراير 2006
بعض التأخير في تحويل المنح المقدمة إلى فلسطين وسوريا بسبب الإجراءات الخارجية

من إرادة الدول المذكرة، إذ يفترض في تحويل الأموال لسوريا مثلا أن يتم ذلك من خلال مراكز تحويل خاصة بدلًا من التعزيز البنكي المباشر.

وكانت اللجنتين الفنية والتخليجهة قد أقرتا خلال اجتماعهما في دبي خلال شهر
فبراير 2006 خطة عمل الدول المشاركة للعام 2006. وإطلاق العام 2007. ويفي يلي
ملخصًا بالأنشطة المنجزة حسب الأهداف الموضوعة.

الهدف الأول: اختيار أعشاب وبيولوجيات وشجيرات عقلية محملة للملوحة وتوزيعها على
برامج البحوث الوطنية في منطقة غرب آسيا وشمال أفريقيا لزراعتها في المناطق
المرموقة بالمياه المالحة.

- حدد خبراء المركز الدولي للزراعة الملحية وخبراء برامج البحوث الزراعية الوطنية
المشاركة سوياً أنواع الأعشاب والبيولوجيات والشجيرات العقلية لزراعتها في مواقع
التجارب المختلفة.

- تضمنت خطة العمل قائمة بالأنواع المقترحة لكل دولة.

- أرسل المركز إلى المراكز الشريكية حوالي 140 سلالة تنتمي إلى 11 نوعًا نباتيًا
لزراعتها مع السلالات المتواجدة لديهم.

- حصلت البرامج الشريكة على بعض أصناف الشوندر واللغتن العلفية التي أرسلها
المركز إليهم من الشركات المنتجة مباشرة.

- اكتمل خلال العام 2006 تحضير مواقع تجارب اختبارات الملوحة الحقلية في كافة
الدول المشاركة.

- ابتدأت تجارب اختبارات تحمل بعض الأنواع النباتية للملوحة.

- ابتدأت تجارب اختبارات أنواع نباتية جديدة في حقول بعض المزارعين.

- اتخذت بعض أنواع الأعلاف المحملة للملوحة على المستوى المحلي لكل دولة
لإكتشافها في السنوات القادمة.

محاصيل الأعلاف ونظم الري التي رُوِدَها المشروع لأحد حقوق المزارعين في عمان. يونيو 2006
الهدف الثاني: تطوير طرق إدارة ملوحة النترة تتضمن خيارات متتعددة لأنظمة الري والأنظمة التي منخفضة التكاليف من أجل إنتاج مستدام للأعلاف في البيئات المالحة
• أنهت بعض الدول فقط تجميع المعلومات المتعلقة بنوعية وممية مصادر المياه الجوفية في مواقع التجارب أو على المستوى الوطني ككل.
• حصل حوالي 5-10 مزارعين من كل دولة على أنظمة الري بالمياه المالحة.
• جمعت كافة الدول المشاركة معلومات عن النبات والري ومياه الري ونتائج المحاصيل المزروعة في مواقع التجارب حسب النماذج الموحدة المعتمدة للمشروع لاستخدامها لاحقاً في توصيف المحاصيل المستخدمة.

الهدف الثالث: تطوير أنظمة الإنتاج الزراعي المستدامة المثلى للأعلاف باستخدام موارد المياه السالحة وتوزيعها على برامج البحوث الوطنية
• زراعة محاصيل الفصة والشعير والدخن اللولبي.
• والذرة الرفيعة في حقول بعض المزارعين.
• زراعة المحاصيل الصيفية والشتوية في حقول بعض المزارعين.
• جمعت ثلاث دول البيانات الاقتصادية والاجتماعية الناجمة عن تنفيذ المشروع حسب النماذج المعتمدة خلال اجتماع العام 2005.

الهند الواعي: تطوير الكارتر البشري العام في برامج البحوث لدول منطقة غرب آسيا وشمال أفريقيا على كافة جوانب الزراعة الملحية

أ. ورش العمل
1. ورش العمل المنتقلة

شارك 25 قفناً من الدول المشاركة بالمشروع (4 من الأردن، 2 من عمان، 2 من باكستان، 3 من فلسطين، 3 من تونس، 8 من سوريا، 3 من الإمارات) في ورشة العمل المتوقفة التي عقدت في سوريا بgxريخ 9-15 سبتمبر 2006.

ركزت ورش العمل على تنمية مهارات الأعمال المحلية وتبادل المعرفة بين المشاركين. فقد قدمت خلال الجلسة الإفتتاحية معايير أهمية إجراء المركز الدولي للزراعة الملحية والهيئة العامة للبحوث العلمية الزراعية في سوريا تضمنت إنجازات المركز والهيئة...
والخط الاستراتيجية لهما بالإضافة إلى التعريف بأهداف مشروع الأغلاف والأنشطة المرتبطة بالع بلا عام 2006. كما قدم المشاركون من الدول المشاركة تقريرًا موجزًا عن سير العمل بالمشروع في مواقع التنفيذ.

زار بعض المشاركون خلال الأيام الخمسة التالية عدًّاً من المواعيد ذات الأهمية البيئية وأسلوب الري والصرف المختلفة، بالإضافة إلى حقول بعض المزارعين المشاركون بالمشروع. وبرز المشاركون خلال توجههم إلى المنطقة الشرقية من سوريا عددًا من مواقع زراعة الشجيرات العلفية، ومشاريع حصاد المياه، وواحة تمر، ومحمية الطيلية للحياة البرية والنباتية (مساحة 32 ألف هكتار) وعدداً آخر من المراعي الصحراوية في المنطقة.

وزار المشاركون مواقع زراعة الأغلاف الخاصة بالمشروع في مدينة دير الزور، وشاركوا بالسعي الحضاري الذي حضره أيضاً عدد من مزارعي وفلاحين المنطقة. بالإضافة إلى زيارة مزارع إنتاج الأغلاف باستخدام المياه الجوفية المالحة، والمشاريع الحديثة لاستصلاح الأراضي وإعادة استخدام المياه الناتجة عن درجات المحاصيل الزراعية. أطلع بعض المشاركون خلال زيارتهم مدينة حلب في شمال سوريا على بعض مزارع إنتاج الأغلاف بالمياه المالحة، ثم زوروا سد الفرات، ويحيرات تجميع مياه الري للمنطقة الشمالية، بالإضافة إلى زيارة عدد من مزارع إنتاج المحاصيل والفاكهة باستخدام مياه ذات مستويات مختلفة ومحطات الهيئة العامة للبحوث العلمية الزراعية.

يهدف المشروع إلى تطوير محاصيل علفية مستدامة لتنمية الثروة الحيوانية في المنطقة.
2. ورشة العمل التدريبية حول استخدام المياه المالحة في الإنتاج الزراعي

نظم المركز الدولي للزراعة الملحية في دولة الإمارات بالتعاون مع المنظمة العربية للتنمية الزراعية ووزارة البيئة والمياه لدولة الإمارات العربية المتحدة ورشة عمل تدريبية حول استخدام المياه المالحة في الإنتاج الزراعي بتاريخ 25-26 نوفمبر 2006. حضرها 14 مشواركاً من دول مشاركة الأوراق و19 مشواركاً من عدد من الدول العربية.

تمثل الهدف من ورشة العمل التدريبية التعريف

بمبادئ وأسس استخدام موارد المياه المالحة في الإنتاج الزراعي والاستفادة من الاتجاهات العالمية والمنظمات الإقليمية في مجال الزراعة الملحية.

- التدريب الغربي

شارك خمسة فتيين من المشرفين على تنفيذ المشروع في الأردن وسوريا وعمان والمركز الدولي للزراعة الملحية في دورة تدريبية حول تربة ونتاج محصول اليعسوب الملوث الذي تنظمها المنظمة الدولية لبحث محاصل المناطق المدارية شبه القاحلة (إكريسات) في وقفة بالهند.

- التدريب على مستوى الدول المشاركة

نظمت ست دول من دول المشروع (الأردن، عمان، باكستان، فلسطين، تونس، الإمارات) دورات تدريبية واحدة خلال العام، ونظمت سوريا دورتين.

- الأيام الحقلية

نظمت كافة الدول المشاركة بالمشروع (الأردن، عمان، باكستان، فلسطين، سوريا وقطر) والدول (الإمارات) بدوامات حلياً للمزارعين بمواقع التجارب في كل دولة.

- زيارات المتابعة الميدانية

زور عدد من خبراء وفنيين المركز الدولي للزراعة الملحية الدول المشاركة بالمشروع للاطلاع على سير
العمل في مواقع التجارب وتوضيح أهداف المشروع للمشرفين على التنفيذ وقائدة خلالها خطط العمل والإنجازات المتوقعة من فريق العمل خلال العام 2006. كما شارك خبراء المركز في الأبحاث الحقلية في الأردن وعمان وباكستان وسوريا والإمارات، وقدموا النصائح والتشجيع الفعال لتنفيذ المشروع.

أثبتت هذه الزيارات تنظيم الأيام الحقلية جدواها في تشجيع فرق العمل وتعريفهم بأهداف المشروع ومحافظة الإجراءات الملائمة لتأسيس مواقع التجارب وطرح الزراعة المناسبة لمختلف أنواع الأغلاف المستخدمة. لذلك لابد من تنفيذها بشكل دوري لمراقبة أعمال التنفيذ عن كثب.

و شراء البذور وتوزيعها على برامج البحوث الزراعية الوطنية لدول المشاركة

وزع المركز الدولي للزراعة المحلية البذور اللازمة لمواقع تجارب محطات برامج البحوث الزراعية الوطنية ومواءمة المزارعين في كل دولة، فقد حصل كل دولة على 2938 بذرة تنتمي إلى 11 نوعًا نباتيًا ووصفت بعض الدول على كميات إضافية من بعض الأنواع بناء على طلباتها. كما نشئ المركز عمليات شراء وتوزيع بذور بعض أصناف الشندر والغلاف الطيني من بعض شركات توزيع البذور التجارية فأسهلها بشكل مباشر إلى الدول المعنية. كما أنفق المركز مع إرسالات لإنتاج كميات كافية من بذور الدخن اللولأ والثمرة الرفيعة اللازمة لتجارب الموسم الصيفي للعام 2007. وتفاوض المركز حالياً مع بعض شركات إنتاج البذور الهندية لشراء بذور أصناف الدخن اللولأ والثمرة الرفيعة الهجينة لتوزيعها على مزارعي الدول المختلفة. ويبين الجدول 7 معلومات مفصلة عن أنواع البذور الموزعة.

زيارة خبراء المركز لمواقع التجارب في تونس وسوريا وباكستان خلال العام 2006.
<table>
<thead>
<tr>
<th>الدخول الموردي</th>
<th>الاسم</th>
<th>الرقم</th>
<th>الوراثة</th>
<th>الاسم</th>
<th>الرقم</th>
<th>الوراثة</th>
<th>الاسم</th>
<th>الرقم</th>
<th>الوراثة</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Feed</td>
<td>19</td>
<td>74</td>
<td>36</td>
<td>Omani</td>
<td>1</td>
<td>153671</td>
<td>1</td>
<td>153663</td>
<td>2</td>
</tr>
<tr>
<td>Sugar Graze</td>
<td>20</td>
<td>75</td>
<td>39</td>
<td>Eureka</td>
<td>2</td>
<td>161633</td>
<td>3</td>
<td>161637</td>
<td>3</td>
</tr>
<tr>
<td>Super Dan</td>
<td>21</td>
<td>76</td>
<td>40</td>
<td>Sceptra</td>
<td>3</td>
<td>185564</td>
<td>4</td>
<td>225012</td>
<td>5</td>
</tr>
<tr>
<td>Sweet Jumbo</td>
<td>22</td>
<td>77</td>
<td>41</td>
<td>Iraqi</td>
<td>4</td>
<td>25583</td>
<td>6</td>
<td>225583</td>
<td>6</td>
</tr>
<tr>
<td>Pioneer 858</td>
<td>23</td>
<td>78</td>
<td>42</td>
<td>American</td>
<td>5</td>
<td>139</td>
<td>7</td>
<td>153671</td>
<td>1</td>
</tr>
<tr>
<td>Omani landrace (white)</td>
<td>24</td>
<td>79</td>
<td>43</td>
<td>PI 153671</td>
<td>1</td>
<td>153663</td>
<td>2</td>
<td>161637</td>
<td>3</td>
</tr>
<tr>
<td>Omani landrace (red)</td>
<td>25</td>
<td>80</td>
<td>44</td>
<td>PI 153671</td>
<td>1</td>
<td>153663</td>
<td>2</td>
<td>161637</td>
<td>3</td>
</tr>
<tr>
<td>IP3616</td>
<td>1</td>
<td>81</td>
<td>blaze</td>
<td>1</td>
<td>55</td>
<td>PI 271206</td>
<td>7</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>IP3609</td>
<td>2</td>
<td>82</td>
<td>Bbllizzard</td>
<td>2</td>
<td>56</td>
<td>PI 271209</td>
<td>9</td>
<td>56</td>
<td>9</td>
</tr>
<tr>
<td>IP3609</td>
<td>3</td>
<td>83</td>
<td>Maestro</td>
<td>4</td>
<td>57</td>
<td>PI 271214</td>
<td>10</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>IP3610</td>
<td>4</td>
<td>84</td>
<td>Adagio</td>
<td>4</td>
<td>58</td>
<td>PI 271219</td>
<td>11</td>
<td>58</td>
<td>11</td>
</tr>
<tr>
<td>IP3611</td>
<td>5</td>
<td>85</td>
<td>Turbo</td>
<td>5</td>
<td>59</td>
<td>PI 279596</td>
<td>12</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>IP3612</td>
<td>6</td>
<td>86</td>
<td>Abondo</td>
<td>6</td>
<td>60</td>
<td>PI 294595</td>
<td>13</td>
<td>60</td>
<td>13</td>
</tr>
<tr>
<td>IP3616</td>
<td>7</td>
<td>87</td>
<td>Dana</td>
<td>7</td>
<td>61</td>
<td>PI 295659</td>
<td>14</td>
<td>61</td>
<td>14</td>
</tr>
<tr>
<td>IP3617</td>
<td>8</td>
<td>88</td>
<td>Blaze</td>
<td>8</td>
<td>62</td>
<td>PI 365650</td>
<td>15</td>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>IP3619</td>
<td>9</td>
<td>89</td>
<td>Internal</td>
<td>9</td>
<td>63</td>
<td>PI 365651</td>
<td>16</td>
<td>63</td>
<td>16</td>
</tr>
<tr>
<td>IP3611</td>
<td>10</td>
<td>90</td>
<td>Hobson</td>
<td>10</td>
<td>64</td>
<td>PI 365720</td>
<td>17</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>IP3611</td>
<td>11</td>
<td>91</td>
<td>Hyola 43</td>
<td>11</td>
<td>65</td>
<td>PI 385321</td>
<td>18</td>
<td>65</td>
<td>18</td>
</tr>
<tr>
<td>IP3612</td>
<td>12</td>
<td>92</td>
<td>Hyola 60</td>
<td>12</td>
<td>66</td>
<td>PI 409174</td>
<td>19</td>
<td>66</td>
<td>19</td>
</tr>
<tr>
<td>IP3616</td>
<td>13</td>
<td>93</td>
<td>Abondo</td>
<td>13</td>
<td>67</td>
<td>PI 409216</td>
<td>20</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>IP3616</td>
<td>14</td>
<td>94</td>
<td>ICSB203</td>
<td>14</td>
<td>68</td>
<td>PI 409267</td>
<td>21</td>
<td>68</td>
<td>21</td>
</tr>
<tr>
<td>IP3616</td>
<td>15</td>
<td>95</td>
<td>ICSB405</td>
<td>15</td>
<td>69</td>
<td>PI 409429</td>
<td>22</td>
<td>69</td>
<td>22</td>
</tr>
<tr>
<td>IP3616</td>
<td>16</td>
<td>96</td>
<td>ICSB483</td>
<td>16</td>
<td>70</td>
<td>PI 409556</td>
<td>23</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>IP3616</td>
<td>17</td>
<td>97</td>
<td>ICSB707</td>
<td>17</td>
<td>71</td>
<td>PI 409669</td>
<td>24</td>
<td>71</td>
<td>24</td>
</tr>
<tr>
<td>IP3616</td>
<td>18</td>
<td>98</td>
<td>ICSB210</td>
<td>18</td>
<td>72</td>
<td>PI 409689</td>
<td>25</td>
<td>72</td>
<td>25</td>
</tr>
<tr>
<td>IP3616</td>
<td>19</td>
<td>99</td>
<td>ICSB3024</td>
<td>19</td>
<td>73</td>
<td>PI 409704</td>
<td>26</td>
<td>73</td>
<td>26</td>
</tr>
<tr>
<td>IP3616</td>
<td>20</td>
<td>100</td>
<td>ICSV745</td>
<td>20</td>
<td>74</td>
<td>PI 414447</td>
<td>27</td>
<td>74</td>
<td>27</td>
</tr>
<tr>
<td>IP3616</td>
<td>21</td>
<td>101</td>
<td>ICSV112</td>
<td>21</td>
<td>75</td>
<td>PI 414452</td>
<td>28</td>
<td>75</td>
<td>28</td>
</tr>
<tr>
<td>IP3616</td>
<td>22</td>
<td>102</td>
<td>ICSV93046</td>
<td>22</td>
<td>76</td>
<td>PI 414499</td>
<td>29</td>
<td>76</td>
<td>29</td>
</tr>
<tr>
<td>IP3616</td>
<td>23</td>
<td>103</td>
<td>SP47513</td>
<td>23</td>
<td>77</td>
<td>PI 414513</td>
<td>30</td>
<td>77</td>
<td>30</td>
</tr>
<tr>
<td>IP3616</td>
<td>24</td>
<td>104</td>
<td>SP47529</td>
<td>24</td>
<td>78</td>
<td>PI 442096</td>
<td>31</td>
<td>78</td>
<td>31</td>
</tr>
<tr>
<td>IP3616</td>
<td>25</td>
<td>105</td>
<td>ICSR172</td>
<td>25</td>
<td>79</td>
<td>PI 443507</td>
<td>32</td>
<td>79</td>
<td>32</td>
</tr>
<tr>
<td>IP3616</td>
<td>26</td>
<td>106</td>
<td>SP40516</td>
<td>26</td>
<td>80</td>
<td>PI 516516</td>
<td>33</td>
<td>80</td>
<td>33</td>
</tr>
<tr>
<td>IP3616</td>
<td>27</td>
<td>107</td>
<td>ICSB682</td>
<td>27</td>
<td>81</td>
<td>Grif 1619</td>
<td>34</td>
<td>81</td>
<td>34</td>
</tr>
<tr>
<td>IP3616</td>
<td>28</td>
<td>108</td>
<td>ICSB702</td>
<td>28</td>
<td>82</td>
<td>Grif 1639</td>
<td>35</td>
<td>82</td>
<td>35</td>
</tr>
<tr>
<td>IP3616</td>
<td>29</td>
<td>109</td>
<td>SP39007</td>
<td>29</td>
<td>83</td>
<td>MAF 74</td>
<td>36</td>
<td>83</td>
<td>36</td>
</tr>
<tr>
<td>IP3616</td>
<td>30</td>
<td>110</td>
<td>SP39105</td>
<td>30</td>
<td>84</td>
<td>MAK 7</td>
<td>37</td>
<td>84</td>
<td>37</td>
</tr>
<tr>
<td>IP3616</td>
<td>31</td>
<td>111</td>
<td>ICSV93048</td>
<td>31</td>
<td>85</td>
<td>MAK 9</td>
<td>38</td>
<td>85</td>
<td>38</td>
</tr>
</tbody>
</table>
الجدول 7 (يتبع): مجموعة البذور الموزعة على برامج البحوث الزراعية الوطنية خلال العام 2006

<table>
<thead>
<tr>
<th>السلالة/المحصول</th>
<th>رقم السلالة</th>
<th>رقم المحصول</th>
<th>رقم السلالة</th>
<th>رقم المحصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICARDA 8</td>
<td>142</td>
<td>91/2 A</td>
<td>121</td>
<td>111</td>
</tr>
<tr>
<td>ICARDA 20</td>
<td>143</td>
<td>111/4 A</td>
<td>112</td>
<td>58/1 A</td>
</tr>
<tr>
<td>AD 187</td>
<td>144</td>
<td>116/2 A</td>
<td>113</td>
<td>59/3 A</td>
</tr>
<tr>
<td>186 AD</td>
<td>145</td>
<td>50/3 B</td>
<td>114</td>
<td>60/1 A</td>
</tr>
<tr>
<td>الرغول</td>
<td></td>
<td>51/1 B</td>
<td>120</td>
<td>61/1 A</td>
</tr>
<tr>
<td>amnicola</td>
<td>136</td>
<td>100/1 B</td>
<td>126</td>
<td>63/2 A</td>
</tr>
<tr>
<td>nummularia</td>
<td>137</td>
<td>100/2 B</td>
<td>127</td>
<td>76/2 A</td>
</tr>
<tr>
<td>undulata</td>
<td>138</td>
<td>113/1 B</td>
<td>128</td>
<td>82/2 A</td>
</tr>
<tr>
<td>الأكاسيا</td>
<td>6/1 D</td>
<td>129</td>
<td>83/1 A</td>
<td>117</td>
</tr>
<tr>
<td>ampliceps</td>
<td>139</td>
<td>21/2 D</td>
<td>130</td>
<td>86/2 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57/2 D</td>
<td>131</td>
<td>91/1 A</td>
</tr>
</tbody>
</table>

خطة العمل للعام 2007

سيتم خلال منتصف شهر مارس 2007 عقد اجتماع خطط المرحلة الأولى والتحضير للمرحلة الثانية في العاصمة الأردنية عمان، يليهما اجتماع اللجان الفنية والتوجيهية. سيتم أيضاً تحضير خطة العمل المرحلة الثانية للمشاريع ومناقشة برامج تطوير الكوادر البشرية المقترحة للعامين القادمين.

ورشة العمل المنتظمة (فوق) واليوم الحفلي للمزارعين (تحت) في سوريا خلال شهر سبتمبر 2006
تطوير تقنيات زيادة إنتاجية الأراضي المتضررة بالملوحة في مناطق أحواض أنهار الإندوغانكتيك وموجونغ ووادي النيل (PMS34)

فترة المشروع: 2004-2007

الشركاء: المركز الدولي لبحوث الأرز، معهد البحوث الزراعية في بنغلاديش، مركز الأرز للبحوث والتدريب (مصر)، معهد بحوث الأرز (إيران)

المصادر: برنامج تحديثات الغذاء والمياه التابع للمجموعة الاستشارية للبحوث الزراعية الدولية من خلال المعهد الدولي لبحوث الأرز

أهمية المشروع

ساهم المركز الدولي للزراعة الملحة في إعداد مسودة المشروع المقدم من المعهد الدولي لبحوث الأرز إلى برنامج تحديثات الغذاء والموارد المائية التابع للمجموعة الاستشارية للبحوث الزراعية الدولية الذي يisseur أعمال المعهد الدولي لإدارة المياه (إيمي). وبعد المواقعة على تنفيذ المشروع، شارك المركز في شهر مارس 2004 في رحلة عمل خاصة لوضع خطة العمل. كما وقع المركز اتفاقية تنفيذ المشروع مع المعهد الدولي لبحوث الأرز في شهر سبتمبر، وابتداء العمل في أواخر العام.

أهداف المشروع

- تحديد المحاصل المتصلة بالملوحة الملائمة لأنظمة إنتاج محاصيل الأرز في بنغلاديش ومصر وإيران.
- توفير مختلف أنواع المحاصيل والأساتذة المتصلة بالملوحة لزراعةها في المناطق المستهدفة.

إنجازات المشروع في العام 2006

اختبر المركز في محطة أبحاث في دبي وفي عدد من دول المنطقة سبعة أصناف من الشονدر (البنجر) العلقي وأربعة أصناف من اللفت والكانولا العلقة (Beta vulgaris) لاختبار تحميلهم لمستويات الملوحة المختلفة (1.0 متر/سنتيمتر-م). بنيت نتائج التجربة أن إنتاجية بعض أصناف الشوندر العلقي كانت جيدة حتى عند مستويات الملوحة المرتفعة. فقد تمكنت إنتاجية الشوندر العلقي من الارتفاع بين 45 و 49 طن/هكتار عند مستوى الملوحة المنخفضة، وبين 9 و 27 طن/هكتار عند مستوى الملوحة المرتفعة، بينما كانت إنتاجية الأوراق الخضراء بين 65 و 117

البراسيكا في محطة أبحاث المركز
 سيتم توزيع بذور الأصناف الواعدة لاختبارها في مصر وإيران في أوائل العام 2007.

لم تكن نتائج نمو أصناف اللفت الكانولا العلقيّة واضحة وكان تحملها للملوحة أقل من أصناف الشوندر العلقي، وكانت أصناف اللفت العلقيّة أفضل قليلاً من أصناف الكانولا.

خطة العمل للعام 2007

- الحصول على بذور 17 صنفاً من الشوندر العلقي و بذور 14 صنفاً من اللفت.
- البراسيكا العلقيّة لاختبارها في محطة بحوث المركز وفي عدد من دول المنطقة.
- اختبار تحمل الملوحة والغذاء العلقيّة لهذه الأصناف لاستخدامها كمحاصيل زراعية.
- بعد انتهاء المواسم الزراعية الأساسية في منطقة دلتا النيل في مصر وسواحل البحر قزوين في إيران، اختبارها بشكل مباشّر في محطة بحوث المركز ومصر.
- توزيع بذور الأصناف الواعدة لاختبارها في حقول المزارعين في مصر وإيران.
أهمية المشروع

يتأنى نحو النباتات بالآليات البيئية المتوازنة للأملاح والمياه في الثقيلة والتي تتأثر بدورها بخصائص النباتات والظروف المناخية عند مراحل وقتها النمو المختلفة. ويعتبر تطوير أساليب إدارة مياه الري واستصلاح التربة في هذه النباتات في ظروف محددة باستخدام مقياس التخلل الزراعي مستويات الأملاح والمياه في التربة، والآثار الناجمة عن تغيرات مساحة النباتات وتكرار مياه الري ومعدلاتها.

وتحدد معاييرvat النباتات إزالة الأملاح المتراكمة في منطقة المحيط الجغرافي للنباتات. ويتمثل التحليل من مياه الصرف الزراعي ذات مستويات الأملاح المرتفعة (وأخاربا ببعض المبيدات وغيرها من المواد الكيميائية) من العوائق التي تواجه الزراعة في بعض المناطق، فمتوسط أحد الموارد المائية المستخدمة في الأنظمة الزراعية فيما لم يستخدم بشكل صحيح.

توفر تجارب مقياس التخلل في محطة أبحاث المركز الدولي للزراعة الملحية نوعاً لدراسة الخصائص الفيزيائية والكيميائية لمياه الصرف الزراعي في الزراعة. ونقولاً لأختار هذه المياه على كمية كبيرة من المعادن والأملاح، لذلك يجب استخدامها لري النباتات المتصلة بالمخلوط حسب نوعية المياه المتوفرة. وقد نجحت الولايات المتحدة الأمريكية وأسترالية في استخدام متغير مستويات التكرر الحيوية المتسلسل لري النباتات المتصلة بالمخلوط بـ مياه الصرف الزراعي.

أهداف المشاريع

- تطوير طرق وأساليب زراعة أنواع الألفاف الملحية العامة واختبار تحميل السلالات البدائية للمخلوط في مقياس التخلل.
- دراسة تأثير كمية ونوعية مياه الري وفرات الحمض والكيمياء الغذائية للنباتات وتحديد الاستجابة المثلى.
- محاكاة إعادة استخدام مياه الصرف الزراعي لتحديد استخدام الأفضل مياه التقليل من كمية مياه الصرف زيادة الإنتاجية لزيادة تحميل النباتات بالمخلوط.

تهدف دراسة آليات حركة الأملاح والمياه في التربة إلى تطوير أساليب أفضل لإدارة مياه الري والزراعة.
الساقط السنوي للمركز الدولي للزراعة الملحية للعام 2006 (1427 هـ)

إنجازات المشروع في العام 2006

زرعت في تجربة مقياس التخلخل خمس مجموعات مختلفة من الأعشاب والشجيرات والأشجار ورويت بمياه الصرف ذات مستويات الملوحة المتزايدة (الشكل 50). وسجلت بيانات النمو حسب كمية ومخلوط مياه الري ونوعية المضادات المستخدم في التجربة.

سجلت بيانات نمو الأشجار في فترات مختلفة من العام (الشكل 51) وتمييز النوع بنموه لارتفاع 2.03 م بنسبة نمو 67% خلال العام، كما النوع Tamarix stricta بنموه لارتفاع 1.87 م ونسبة نمو 49%. ويبين الجدول 8 مستويات النمو والانتاجية كافة الأنواع المزروعة.

الشكل 51: أساليب أشجار المختلفة المولحة بعيا، تتراوح ملوحتها بين 15 و 15كمدلسبمنز/م.
الجدول 8: أطوال ونتائج أنواع الأغصان والأشجار والشجيرات الملحية (تمثل الأرقام في السطر الأول من كل مجموعة)

<table>
<thead>
<tr>
<th>الموضوع</th>
<th>ملوحة مياه الري المستخدمة في المجموعة</th>
<th>الوحدة</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplex canescens</td>
<td>Conocarpus lancifolius</td>
<td>Leptochola fusca</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ملوحة مياه الري</td>
<td>34.3</td>
<td>16.10</td>
</tr>
<tr>
<td>طول الرياح</td>
<td>4.90</td>
<td>-</td>
</tr>
<tr>
<td>الانتفاعية المطرية</td>
<td>188.7</td>
<td>131.18</td>
</tr>
<tr>
<td>الانتفاعية الجافة</td>
<td>45.0</td>
<td>-</td>
</tr>
<tr>
<td>طول الجذر</td>
<td>23.3</td>
<td>434.42</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ω/ΩGôZ2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atriplex lentiformis</td>
<td>Tamarix stricta</td>
<td>Sporobolus arabisca</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ملوحة مياه الري</td>
<td>28.11</td>
<td>16.25</td>
</tr>
<tr>
<td>طول الرياح</td>
<td>4.90</td>
<td>-</td>
</tr>
<tr>
<td>الانتفاعية المطرية</td>
<td>50.67</td>
<td>37.47</td>
</tr>
<tr>
<td>الانتفاعية الجافة</td>
<td>52.3</td>
<td>-</td>
</tr>
<tr>
<td>طول الجذر</td>
<td>77.68</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ω/ΩGôZ2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atriplex nummularia</td>
<td>Salvadora persica</td>
<td>Sporobolus virginicus</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ملوحة مياه الري</td>
<td>31.16</td>
<td>16.10</td>
</tr>
<tr>
<td>طول الرياح</td>
<td>4.90</td>
<td>-</td>
</tr>
<tr>
<td>الانتفاعية المطرية</td>
<td>76.15</td>
<td>37.47</td>
</tr>
<tr>
<td>الانتفعية الجافة</td>
<td>37.47</td>
<td>-</td>
</tr>
<tr>
<td>طول الجذر</td>
<td>50.3</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ω/ΩGôZ2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atriplex halimus</td>
<td>Acacia ampliceps</td>
<td>Paspalum vaginatum</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ملوحة مياه الري</td>
<td>34.34</td>
<td>16.78</td>
</tr>
<tr>
<td>طول الرياح</td>
<td>5.40</td>
<td>-</td>
</tr>
<tr>
<td>الانتفعية المطرية</td>
<td>121.6</td>
<td>37.47</td>
</tr>
<tr>
<td>الانتفعية الجافة</td>
<td>71.94</td>
<td>-</td>
</tr>
<tr>
<td>طول الجذر</td>
<td>50.3</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ω/ΩGôZ2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atriplex undulata</td>
<td>Conocarpus lancifolius</td>
<td>Distichlis spinata</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ملوحة مياه الري</td>
<td>34.34</td>
<td>16.78</td>
</tr>
<tr>
<td>طول الرياح</td>
<td>5.40</td>
<td>-</td>
</tr>
<tr>
<td>الانتفعية المطرية</td>
<td>121.6</td>
<td>37.47</td>
</tr>
<tr>
<td>الانتفعية الجافة</td>
<td>71.94</td>
<td>-</td>
</tr>
<tr>
<td>طول الجذر</td>
<td>50.3</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ω/ΩGôZ2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Qh°éπd</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
كان طول العشبين الأفضل *Leptochola fusca* و *Sporobolus arabicus* وإنتاجية العشبين الأفضل، بينما كان طول وزن الجذور للعشبين أفضل من بقية الأنواع. وكان *D. spicata* و *L. fusca* ارتفاع نوعي الأشجار الأفضل، *Conocarpus lancifolius* و *Acacia ampicable* و *Tamarix stricta* كانت إنتاجية النوع الأفضل. كان النمو الجذري مثماً بالنسبة للأنواع *Acacia ampicable* و *Tamarix stricta* و *C. lancifolius* (العشبي) أفضل أنواع الشجيرات الملحية إنتاجية. ويشكل عام كانت إنتاجية الأشجار والأشجار أفضل من إنتاجية الشجيرات بسبر ري الشجيرات بمستويات ملوحة أقل. سجلت خلال التجربة أيضاً كمية المياه المستخدمة في النباتات وكمية المياه الزائدة عن حاجة النباتات كفاعة مستويات النباتات المزروعة. حيث كان المتوسط السنوي لاستهلاك أنواع الأشجار المختلفة من المياه حوالي 50% من مياه الري، واستهلاك الأشجار 25-30%، واستهلاك الشجيرات الملحية 8-12% وذلك حسب النوع (الشكل 46).

بينت نتائج الاختبارات أن معدل استهلاك أنواع الأشجار والأشجار السنوي للمياه كان حوالي 85% ومعدل مياه الصرف 15% فقط عند استخدام الأنواع الثلاثة معاً. أدى تناقص كمية المياه المستخدمة إلى ارتفاع ملوحة مياه الصرف ببلد ثلاثة أضعاف ملوحة مياه الصرف للمحلول الأول (الأشجار في هذه التجربة) وبين بين الشكل 50 هذه النتيجة. وقد تراوح متوسط ملوحة مياه الصرف السنوي 5%.

الشكل 50: كمية المياه المستخدمة لمختلف أنواع النباتات المختلفة في التجربة (يعادل حجم مياه الصرف الناتجة من المحاصيل الثلاث حوالي 10-15%)

التقرير السنوي للمركز الدولي للزراعة الملحية للعام 2006 (1423 هـ)
لمجموعات النباتات الخمسة بين 31.09 و 32.37 ديسيمتر/م.
سجلت أيضاً خلال فترة الحصاد ملوحة التربة عند عمقين مختلفين
فكتانت الناقلة الكهربائية
متماثلة عند العمقين المختلفين
(30-0 و 60-30 سم) وكانت
أقل عند الأعشاب وأعلى عند
شجيرات الرغام الملحية (الشكل 53).

خطة العمل للعام 2007
سيتم خلال العام 2007 دراسة
محتويات مياه الصرف الملاحة
من المواد الغذائية، والخصائص
الكيميائية لها، وعلاقتها
بمستويات الملوحة لمختلف أنواع
النباتات المستخدمة. وتشمل هذه
البيانات أهمية كبيرة لحماية البيئة من
المواد السامة التي تحملها مياه الصرف
للترية. كما سيتم خلال العام دراسة طرق
المعالجة الحيوية لتنقية مياه الصرف
وتغويرها وإعادة استخدامها لري النباتات.

الشكل 53: مستويات ملوحة التربة الناتجة عن استخدام أنواع النباتات المختلفة عند عمقين 30-0 و 60-30 سم

الأعشاب والأشجار في مقياس التخلط

الطيبات أهمية كبيرة لحماية البيئة من
المواد السامة التي تحملها مياه الصرف
للترية. كما سيتم خلال العام دراسة طرق
المعالجة الحيوية لتنقية مياه الصرف
وتغويرها وإعادة استخدامها لري النباتات.
استخدام مياه متردية النوعية لاستغلال المناطق الصحراوية والمتملحة في باكستان

(PMS21)

فترة المشروع: 2006–2003

الشركاء: مجلس البحوث الزراعية في باكستان

المصدر: مجلس البحوث الزراعية في باكستان، أساسي

أهمية المشروع

تواجه باكستان تحديات كثيرة يتمثل في ازدياد الطلب على الغذاء والأعلاف بسبب تزايد عدد السكان وتناقص موارد المياه وكمية الأراضي الزراعية الخصبة. فقد تناقصت موارد المياه خلال السنوات الثلاثة الماضية بحوالي 40% في منطقة حوض الأندوس، كما تضعف عدد السكان خمس مرات خلال العقود الخمسة الأخيرة مما انعكس على تناقص حصةfred من المياه بشكل كبير، لذلك استدعت الضرورة استخدام موارد المياه غير التقليدية في الزراعة.

تبلغ مساحة الأراضي المتملحة حوالي 6.8 مليون هكتار وهذا له آثار اقتصادية واجتماعية على صغار المزارعين. حيث تشكل هذه المناطق حوالي 47% من مجمل مساحة مقاطعة السند وأكثر من 15% من مجمل مساحة مقاطعة البنجاب. لذلك فإن إعادة زراعة هذه المناطق بأشجار الفاكهة والمحاصيل المختلفة وريها بالمياه الجوفية المالحة سوف يؤدي إلى زيادة الإنتاجية الزراعية في تلك المناطق بشكل كبير ويوفر العوائد الاقتصادية للمجتمعات المحلية.

وإنطلاقاً من مهمة المركز الدولي للزراعة الملحة في تطوير مشروع مشتركة مع الدول الأعضاء بمنظمة المؤتمر الإسلامي تهدف إلى دعم مشروعات التنمية الزراعية، فقد أبدأت المركز في أوائل العام 2003 بتنفيذ مشروع مدة ثلاث سنوات بهدف إلى معالجة مشاكل الملحية في باكستان بالتعاون مع مجلس البحوث الزراعية، وجرى تمديد فترة التنفيذ في أوائل العام 2006 لمدة عام لإنهاء المراحل غير المكتملة.

أهداف المشروع

- اختيار الأنواع النباتية الملائمة للإنتاج الزراعي.
- تطبيق طرق الري المستخدمة من أجل الاستغلال الأمثل للمياه ذات النوعية المتدنية.
- مراقبة ملحية الطرق المهمشة.
- تطوير أساليب إدارة المياه والأراضي الهامشة.

يستخدم مزارعو باكستان بخبرات المركز الدولي للزراعة الملحة لاستخدام التربة المتملحة

يمثل النص المقالة السعودية في إنتاج الملحية في باكستان. وتطرق النص إلى أهمية المشروع الذي تواجهه باكستان من تحديات في ازدياد الطلب على الغذاء والأعلاف بسبب تزايد عدد السكان وتناقص موارد المياه وكمية الأراضي الزراعية الخصبة. حيث تناقصت موارد المياه خلال السنوات الثلاثة الماضية بحوالي 40% في منطقة حوض الأندوس. لذلك استدعت الضرورة استخدام موارد المياه غير التقليدية في الزراعة. وتبلغ مساحة الأراضي المتملحة حوالي 6.8 مليون هكتار وهذا له آثار اقتصادية واجتماعية. لذلك تم إنشاء مشروع مشتركة مع الدول الأعضاء بمنظمة المؤتمر الإسلامي في عام 2003 بهدف إلى معالجة مشاكل الملحية. يتضمن النص أهداف المشروع مثل اختيار الأنواع النباتية الملائمة للإنتاج الزراعي، تطبيق طرق الري المستخدمة من أجل الاستغلال الأمثل للمياه ذات النوعية المتدنية، وتطوير أساليب إدارة المياه والأراضي الهامشة. يهدف النص إلى مساعدة المزارعين باكستانيين في استخدام التربة المتملحة بشكل أكثر كفاءة.
إنجازات المشروع في العام 2006

أنشأ مجلس البحوث الزراعية في باكستان بإشراف خبراء المركز الدولي للزراعة
الملحية مواقع التجارب في ثلاثة مناطق متميزة تمثل أنواعًا مختلفة للترية الملتزمة
وزرعت بأنواع أشجار الفاكهة والمحاصيل العلفية لاختبار أنظمة الإنتاج الزراعي في
الترية الملتزمة والمرؤية بالمياه المالحة. كانت أهم نتائج المشروع إعادة تأهيل
أراضي مهجورة لأكثر من 45 عاماً، لذلك تمت زيادة مساحة موقع التجربة في منطقة
ببالول من 3 إلى 13 هكتارًا بسبب اهتمام المجتمعات المحلية في تلك المنطقة بها.

استخدمت أساليب الاستصلاح الحيوية لتلك الأراضي بزراعة كلاً بحسب حكائر
وأيضاً أنواع أشجار (Cynodon dactylon) والسائرون (Leptochloa fusca)
الجاف ورزعت باستعمال طرق ومعدلات ري مختلفة. بينن التجارب
فظل زارعة أشجار الفاكهة بشكل مباشر في المنطقة وكان لابد من زراعتها في مكان
آخر ونقلها بعد ذلك. وقد حصدت الأعشاب المزروعة خلال العام 2006 ويتم حالياً
تحليل النتائج.

إعادة تأهيل الأراضي المهجورة منذ عقود في باكستان
أكثار وتحسين علف نيبا في البيئات الجافة (PMS29)

فترة المشروع: 2004-2006

الشركاء: شركة نيبا الدولية

المصادر: شركة نيبا الدولية، أساسي

أهمية المشروع

تتولَّد المياه المكربة في المناطق الساحلية بملحها بسبب تبخير مياه البحر مما انعكس سلباً على المشاريع الزراعية وتجميل المساحات الخضراء. فقد تناقصت كمية النباتات البرية في هذه المناطق بصورة ملحوظة باستثناء نبات القرم مما أدى إلى تدهور الأراضي والقضاء على البيئة النباتية البرية.

وتتواجد بالرغم من ذلك في تلك المناطق بعض النباتات المكربة التي يمكنها التأقلم مع مستويات الملوحة المرتفعة التي تصل إلى مستوى ملوحة مياه البحر، لكن لم يتم استخدام هذه النباتات بشكل اقتصادي. فأن يكون لها قيمة اقتصادية. ويعتبر عشب نيبا (Distichlis spicata) أحد هذه النباتات القليلة التي يمكنها ت.':

وطورت شركة نيبا الدولية هذا العشب الذي وُلِد بتسوية تجارية.

وقع المركز الدولي للزراعة المكربة مذكرة تفاهم مع شركة نيبا الدولية لاختيار نمو المجموعة النباتية للفلاز نيبا في البيئات الساحلية الجافة والرطبة في منطقة الشرق الأوسط وقد أثبت هذا العشب جدواه وأمكانية زراعته بسهولة من مياه البحر مباشرة مما يساهم في تحسين المناطق الساحلية المهجورة إلى مناطق منتجة للألاف.

أهداف المشروع

• دراسة إمكانية زراعة علف نيبا في الظروف المكربة باستخدام مياه البحر شديدة الملوحة.
• زيادة الكمية المتوفرة من علف نيبا حسب الاتفاقيات الموقعة مع شركة نيبا الدولية.
• شركة نيبا العربية.

إنجازات المشروع في العام 2006

زرعت التجربة في محاور máquina، المركز الدولي للزراعة المكربة خلال العام 2004 و십시오 بثلاثة مراحل (15-20 سم)، وحصدت التحدي ثلات مرات سنوياً، وسجلت بيانات نموها. بانت النتائج أن إنتاجية النبات
الجدول 9: الإنتاجية الكلية لفلفل نيبا خلال فترات النمو المختلفة وعند مستويات الملوحة ومعدلات الري المختلفة

<table>
<thead>
<tr>
<th>فترة النمو</th>
<th>إنتاجية المادة الجافة (طن/hec)</th>
<th>إنتاجية المادة الحبراء (طن/hec)</th>
<th>معدلات الري</th>
<th>مستوى الملوحة (ديسيمتر/ي)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بالحصة الأولى (أبريل)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.74</td>
<td>6.35</td>
<td>7.67</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>6.17</td>
<td>7.99</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>8.00</td>
<td>9.17</td>
<td>10.99</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>8.45</td>
<td>9.77</td>
<td>15.92</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>8.72</td>
<td>11.05</td>
<td>13.42</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>7.46</td>
<td>12.03</td>
<td>14.02</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>9.18</td>
<td>14.17</td>
<td>16.24</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>4.50</td>
<td>6.43</td>
<td>7.33</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>4.00</td>
<td>5.64</td>
<td>7.60</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>7.60</td>
<td>9.01</td>
<td>9.01</td>
<td>1.50</td>
</tr>
</tbody>
</table>

	بالحصة الثانية (يوليو)			
	2.99	3.65	4.16	1.00
	6.12	7.83	8.80	1.25
	9.11	9.80	10.92	1.50
	4.01	5.51	6.99	1.00
	3.00	5.07	6.79	1.25
	8.00	9.69	11.64	1.50
	3.18	4.70	5.33	1.00
	1.73	3.78	4.33	1.25
	7.74	11.38	14.30	1.50

	بالحصة الثالثة (ديسمبر)			
	2.42	3.01	4.06	1.00
	4.87	6.70	7.89	1.25
	8.19	10.6	12.75	1.50
	3.79	5.46	6.87	1.00
	3.81	5.19	6.49	1.25
	0.58	0.85	10.32	1.50
	3.04	4.64	5.44	1.00
	3.17	5.17	5.77	1.25
	7.56	9.11	13.05	1.50

الأولى كانت أعلى بكثير من الحشتين الثانية والثالثة عند معاملات الملوحة والري المختلفة (الجدول 9)، وكانت الإنتاجية أعلى عند مستوى الملوحة 25 دماغا/م. فيبلغ متوسط إنتاجية المادة الجافة لمستويات الري المختلفة 4.37 تون/هكتار (الشكل 54) وكانت الإنتاجية أعلى (3.24 تون/هكتار) عند مستوى ري يعادل مرة ونصف من احتياجات النباتات المائية لمستويات الملوحة الثلاث.

بينما التحليل الإحصائي للبيانات تأثيراً واضحاً لمعاملات الملوحة ومعدلات الري على الإنتاجية عند

الشكل 54: نتائج المادة الجافة والمقدرة عند مستويات الملوحة ومعدلات الري المختلفة
الجدول 10: تحليل لاختلافات ومستوى التأثير الأقل لمعدلات الري ومعاملات الملوحة المختلفة على فترات حش عشب نسباً عند مراحل النمو المختلفة

<table>
<thead>
<tr>
<th>موعد الحصاد</th>
<th>الفيضان المتسد</th>
<th>معدلات الملوحة والري</th>
<th>معدلات الري</th>
</tr>
</thead>
<tbody>
<tr>
<td>أبريل</td>
<td>1.17 غ م</td>
<td>14.29</td>
<td>1.47 غ م</td>
</tr>
<tr>
<td></td>
<td>1.27 غ م</td>
<td>16.27</td>
<td>1.65 غ م</td>
</tr>
<tr>
<td></td>
<td>1.53 غ م</td>
<td>14.69</td>
<td>1.76 غ م</td>
</tr>
<tr>
<td>يوليو</td>
<td>1.27 غ م</td>
<td>22.21</td>
<td>1.48 غ م</td>
</tr>
<tr>
<td></td>
<td>1.72 غ م</td>
<td>31.00</td>
<td>1.69 غ م</td>
</tr>
<tr>
<td></td>
<td>1.37 غ م</td>
<td>25.32</td>
<td>1.46 غ م</td>
</tr>
<tr>
<td>ديسمبر</td>
<td>1.27 غ م</td>
<td>0.38</td>
<td>1.47 غ م</td>
</tr>
<tr>
<td></td>
<td>1.47 غ م</td>
<td>0.52</td>
<td>1.98 غ م</td>
</tr>
<tr>
<td></td>
<td>1.15 غ م</td>
<td>0.16</td>
<td>1.65 غ م</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>معمل الاختلاف</th>
<th>موعد الاختلاف</th>
<th>فيرسلا 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 غ م</td>
<td>7.5 غ م</td>
<td>0.05 غ م</td>
</tr>
<tr>
<td>0.01 غ م</td>
<td>3.0 غ م</td>
<td>0.01 غ م</td>
</tr>
<tr>
<td>0.001 غ م</td>
<td>0.3 غ م</td>
<td>0.001 غ م</td>
</tr>
</tbody>
</table>

وحش النبات في شهر أبريل وعدم وجود تأثير واضح لمعاملات الملوحة في فترات الحش الأخرى. وبدأت النتيجة أيضاً تأثير معدلات الري على الإنتاجية في كافة فترات الحش (الجدول 10).

بينما النشل 55 إنتاجية المادة الجافة لسنوات التجربة الثلاثة والثانيائمه يبدو فيها واضحًا أن المستوى المرتفع الذي يعدل مرة ونصف من مظلات النبات المائية أدى إلى زيادة الإنتاجية بشكل ثابت عند مستوى الملوحة 0.5 و 0.25 ديسيلتر/م² إنتاجية تتراوح بين 37 و 38 نقاط في العام 2006. أما المستوى الملوحة المرتفع (40 ديسيلتر/م²) فلم يكن له أي تأثير على الإنتاجية عند مستوى الري المختصر والمنخفض والمتوسط.

وبدأت نتائج تجربة أخرى لدراسة جدوى إضافة سماق سلال الصوديوم عند مستوى ملوحة يعادل 25
ديسيسمز/م ومستوى ري يعادل مرة ونصف من منطقيين النباتات المائية أن إضافة سلغات الصوديوم أدى إلى زيادة إنتاجية المادة الجافة إلى معدل يتراوح بين 58 و 44.4 طن/هكتار. ولم يكن لإضافة جرعات مختلفة من سلفات الصوديوم (0.6 ميليومل) أي تأثير على الإنتاجية للآوراق (الشكل 56).

بينت النتائج أيضاً أن الإنتاجية الكلية للمادة الجافة كانت في العام 2006 مماثلة تقريباً لإنتاجية العام 2004 ولكن أقل من إنتاجية العام 2005 (الشكل 57). بينت نتائج امتصاص البخضور (الكلوروفيل) أنها لم تتأثر باختلاف مستويات الملوحة ومعادل الري والتسميد المختلفة وحافظ النبات على لونه الأحمر الطبيعي ومحتويه من البخضور حتى من دون إضافة السماد الثلاثي المركب من الأوزي والفسفور والبوتاسيوم بالإضافة إلى إنتاجية المرة المرفوعة ونموه الطبيعي بعد حصاده، والاختلاف الوحيد هو في تغير الإنتاجية عند تغير فترات الحصاد.

تراوحت ملوحة التربة لمستويات الملوحة المرتفعة (40-4) ديسيسمز/م بين 27.65 و 27.76 ديسيسمز/م وذلك حسب معدلات الري المستخدمة، وارتفاعات ملوحة التربة بشكل طبيعي عند مستوى ملوحة 25 ديسيسمز/م بعد إضافة سلفات الصوديوم، مما يؤكد أن استخدام الطرق الصماصة للمعالامل المستخدمة يحافظ على توفر ملوحة التربة عند مستوى ملوحة الري وزيادة من إنتاجية النبات.

خطة العمل للعام 2007

حشط النباتات في العام 2005 على ارتفاع 25 سم وحشط في العام 2006 على ارتفاع 35 سم لدراسة تأثير الحش المكوف على الإنتاجية وعودة نمو النبات، وربما أنه لم يظهر أي تأثير لهذا فسوف يتم حش النبات مرات أكثر وجمع العينات لتحليلها ودراسة تأثير فترات الحش على محتوى النبات من المواد العضوية وجودته العقلية.
استجابة عشبى العشبي المحلي والليبيد الأفريقي المستورد لملوحة المياه (PMS30)

فترة المشروع: 2006

المؤسسة: وزارة البيئة والمياه

المؤسسات: وزارة البيئة والمياه، أساسي

أهمية المشروع

أدخل المركز الدولي للزراعة الملحية إلى المنطقة خلال السنوات القليلة الماضية بعض أنواع النباتات المتحملة للملوحة من عدة مصادر زراعية وبيئية من أنحاء مختلفة من العالم. ويعتقد نجاح أي نوع نباتي جديد على تأقلمه مع الظروف البيئية المحلية وتحمله للملوحة. وما أن الأنواع المحلية تتأقلم مع محاولة توطينها بشكل أسرع من الأنواع المستوردة، لذلك أنشأ المركز التعاون مع وزارة البيئة والمياه في دولة الإمارات دراسة استجابة عشبى العشبي المحلي والليبيد الأفريقي (Lasirus scindicus) المستورد لمستويات مختلفة من ملوحة مياه الري ومعدلاتها.

أهداف المشروع

- دراسة استجابة العشبي لمستويات ملونة مختلفة من ملوحة مياه الري.
- تقييم نموهما وثباته للملوحة الجافة.
- وقيمتها الغذائية.

إنجازات المشروع في العام 2006

تم إثبات هذين العشبين بطريقة البذور بسبب الحيوية المنخفضة للبذور، وإلاً من ذاك كان نموهما بطينًا فأعيد إشتراء بذور جديدة في الممثل الزراعي وحراسته فيما بعد في موقع التجربة بمحطة أبوظبي التابعة لوزارة البيئة والمياه وربما بعد نموهما الأولي الجيد بثلاثة مستويات ملونة (0.2، 0.4، 0.6 ديسيلتر/م). حتي العشبين خمس مرات خلال العام لتسريع نموهما وتقليلهما مع الظروف البيئية (مرتين في أكتوبر....)
وديسمبر بعد تطبيق معاملات الملوحة. وبينما تبين الشكل 58 الإنتاجية الكلية للعشبين بعد تطبيق معاملات الملوحة حيث بلغت إنتاجية الماء الجافة المحلي عند مستوى ملوحة 15 طن/هكتار لعشب الاعتيدي للمستورد (المثل القيم الإنتاجية العشبيين بعد تطبيق معاملات الملوحة).

الشكل 58: الإنتاجية الكلية (الخضرة والجافة) لعشب الاعتيدي المحلي وعشب الديد الإفريقي المستورد (تمثل القيم الإنتاجية العشبيين بعد تطبيق معاملات الملوحة) 12,94 طن/هكتار. لذلك يتوقع أن تبلغ الإنتاجية السنوية الكلية حوالي 50-55 طن/هكتار من الماء الجافة عند حش العشبيين سنوياً. وتؤكد هذه النتائج إمكانية استخدام هذين العشبيين في مشاريع إنتاج الأعلاف في المنطقة.

خططة العمل للعام 2007

تقييم مستوى النمو والإنتاجية العلفية للعشبيين عند فترات الحش المختلفة بالإضافة إلى دراسة قيمهما الغذائية خلال مراحل العام المختلفة.
تجارب الزراعة الغابية باستخدام أشجار الأكاسيا وعشب السبينوس الباسغالام (PMS31) عند مستويات الملوحة المختلفة

فترة المشروع: 2004-2007
المصدر: أساسي

أهمية المشروع

تعتبر زيادة إنتاجية وحدة المساحة والقيمة الغذائية للمحاصل من العوامل الهامة لزيادة الإنتاجية الغذائية، لذلك يجب أن يتضمن الإنتاج الزراعي بجدته وتخطيطه تكاليف إنتاجه لكي يحقق المنفعة الاقتصادية. وقد حظيت الاستخدامات الثانية للمحاصل بالاهتمام واسعًا مؤخرًا إضافةً إلى استخداماتها التقليدية، وتعتبر كفاءة استخدام النباتات المحاذية للعوائق الهامة التي تؤثر على إنتاجية المناطق المهجورة والألوية خصوبةً لأن تكاليف تسويها المرتفعة تجعلها غير اقتصادية.

تتضمن أنظمة الإنتاج المتعددة مجم زراعة عدة محاصيل في منطقة واحدة ومنها نظام الزراعة الغابية الذي يعد على دمج زراعة الأشجار ببعض أنواع المحاصيل الحقلية في منطقة واحدة بحيث تتكامّل النباتات في الحصول على المواد الغذائية والمياه اللازمة.

ساهمت أبحاث المركز في إدخال عدة أنواع من النباتات المتحملة للملوحة إلى دول المنطقة ومنها أشجار الأكاسيا البوقولية (Acacia ampliceps) التي تتضمن على تثبيت الأزور في البيئة كواحدة تمتها خليفة جيدة للحيوانات ومصدراً للوقود الحيوي وتحسين البيئة. لذا ابتدأ المركز بتنفيذ تجربة مرآدة للزراعة الغابية (Sporobolus arabicus) تهدف إلى زراعة عشب السبينوس الباسغالام (Paspalum vaginatum) مع أشجار الأكاسيا لدراسة استجابة العشبين لمستويات الملوحة المختلفة وناهوهما ونتائجها في حالي التسليح أو من دون تسميد.

أهداف المشروع

- اختيار إمكانية دمج أنواع الأشجار والأشجار في نظام متكامل يهدف إلى زيادة الإنتاجية.
- تقليم آثار إحلال الأزور بعد تثبيته من أشجار الأكاسيا البوقولية.
- تقليم إمكانية استخدام أنظمة الألف المتنوعة من أشجار وأشجار في تغذية النباتات.

إنجازات المشروع في العام 2006

زرعت التجربة في العام 2004 وحشتها الأشجار للمرة الأولى في العام 2005 وسجّلت بيانات النمو في العام 2006 عند مستويات الملوحة المختلفة (0.1، 0.2 و0.3 ديسيلتر/م) في حالة التسليح (معدل 50 كجم/هكتار من السماد الثلاثي المركب من
الوزن والفيتامين والبوتاسيوم بفترة 2000، والتي لم يكن لها تأثير واضح على النمو، وبعد هذا إلى قابلية أنواع الأشجار الباقية لتثبيت الأوز في التربة.

لم تبين نتائج تجربة التسميد على إنقاص مادة الجافة لعش السبورولس عند مستويات الملوحة المختلفة، لكن إنقاص العشب في العام 2000 كان أكبر بحوالي 20% عند تسميد مثالي بعدم التسميد، وازداد تناقص عشب الباسابل في حوالي 29% في حالة التسميد عند مستوى الملوحة المعتدلة (1 ديسيمتر/م). بينما لم يكن للتسميد تأثير واضح على النمو، وبدأت الأوز في النمو في التربة والمحاصيل (45).

كان نمو أشجار الأكاسيا جيدا أيضاً وإن تأثر بعض أرواق روعة الملوحة المشتركة بسبب رذاذ الماء الماليحة من الرشاشات المستخدمة لري الأعشاب. لذلك لم تظهر أي مشاكل لأرواق الأشجار المرورية بنظام التقطيع، وبينما تبين التمسيد أكثر من متر ونصف في خلال سنة ونصف حيث تلاحظ زيادة طفيفة في أطول الأشجار المشتركة.

ازدادت مادة الغذاء بزيادة ملوحة مياه الري وكانت أقل في المستويات العميقة (50 - 150 سم) لعش السبورولس، وازدادت قليلاً في حالة التسميد، بينما لم يظهر تأثير واضح للتمسيد على عشب الباسابل (الشكل 46).

أجريت استعدادات في أماكن متفرقة من موقع التجربة لقياس قابلية أشجار الأكاسيا على تثبيت الأوز، ودورها في الاستغناء عن التسميد، وقبل النتائج أن كمية الأوز المتواجدة في التربة المزروعة بالعشرين كانت أكثر من تربة الأشجار، وكانت كمية الأوز أكثر قليلا عند مستوى الملوحة المعتدلة (1 ديسيمتر/م). ولم تتجاوز نسبة الأوز في حالة التسميد أو غير التسميد معدل (.10)}
الشكل 22: نسبات الأزوت في حالتين تسميد ومن غير تسميد لعشب السبوروبولس والبسبالام والأكاسيا

يتخلل عشب السبوروبولس (مقدمة الصورة) مع أشجار الأكاسيا (خلفية الصورة) في نظام الزراعة الغابية

الشكل 21: ملوحة التربة عند عمقين مختلفين في حالة التسميد أو من غير تسميد

خطة العمل للعام 2007

متابعة تسجيل بيانات نمو وإنتاجية الأنواع المزرعة عند مستويات الملوحة المختلفة في حالة التسميد أو من غير تسميد. سيتم أيضاً التركيز على دور أشجار الأكاسيا في تثبيت الأزوت عند مستويات الملوحة والتسميد المختلفة للأعشاب، بالإضافة إلى دراسة القمامة الغذائية لها خلال مراحل العام.

القرير السنوي للمركز الدولي للزراعة الملحية للعام 2006 (1426 هـ)

١٠٠% والتي تعتبر من مستويات التسميد المنخفضة (الشكل 21). لذلك سيتم التوسع في تحليل التربة والنتائج خلال العام 2007 لتحديد دور ثبات الأزوت في نظام الزراعة الغابية المتعدد.
مساعدة المجتمعات المحلية في منطقة حوض بحر الأرال على مواجهة تدهور الأراضي ومصادر المياه من خلال إنشاء مواقع نمذجية (PMS35)

فترة المشروع: 2007-2005

الشركاء: كازاخستان، تركمانستان، أوزبكستان، المركز الدولي للبحوث الزراعية في المناطق الجافة

المنطقة الجافة (إيكاتريتا) المعهد الدولي لإدارة المياه (إيمي)

المصادر: البنك الآسيوي للتنمية

أهمية المشروع

أدى سوء إدارة عمليات الري والتغيرات المناخية ومشاكل أنظمة الصرف الزراعي وغيرهما من العوامل إلى تناقص الإنتاج الزراعي بشكل كبير في دول وسط آسيا. بسبب تدهور التربة وتغذية الأراضي باليورا المائحة، وزيادة التربة المسننة تراجع الإنتاج الزراعي في المناطق الجافة (إيكاتريتا). المعهد الدولي لإدارة المياه (إيمي) أن إتباع الطرق المناسبة لإدارة موارد المياه والتنمية تتعكس بوضوح على زيادة الإنتاجية الزراعية ويهدف هذا المشروع إلى إدخال طرق جديدة ومتكافئة لإدارة التربة والمياه والنبات لتحسين إنتاجية القطاع الزراعي في المنطقة.

يشترط المركز على جانب المشروع المتعلق بتقييم وإدخال أنواع مختلفة من الأعشاب التقليدية وغير التقليدية المتصلة للمعلومات في تلك المناطق المتغيرة، بالإضافة إلى تدريب الكوادر البشرية الفنية.

ويعتبر أن يؤدي تنوع القادة الزراعية للمحاصل المزروعة في البيئات المائحة إلى استغلال الإنتاج الزراعي وزيادة العوائد النقدية للمزارعين. ويساهم إدخال أنواع وأصناف جديدة من المحاصيل العلفية والعشبية والبقيولية وأنواع الشجيرات المثلية في تخفيض حدة التغطية المائية وصيحة الأرباع المتردية.

أهداف المشروع

- تطوير الطرق الزراعية (الكثافة النباتية) جرعات التسميد، مواد الزراعة، العناية بالمحاصيل، مواعيد الحصاد الخ... المشابهة للبيئات المعززة المختلفة.
- اختيار أنواع النباتات المثالية لبيئات تلك المناطق ومستويات الملوحة فيها وأنظمة الإنتاج الزراعية السائدة في أصل مساعدة مزارعي المناطق يرفقية على معالجة مشاكل ملوحة المياه والترية بكافأة.
إنجازات المشروع في العام 2006

ابتدأ تنفيذ المشروع في العام 2005 في عدة محطات بحثية مختلفة شملت محطة مختارال جنوبي كازاخستان، ومحطة الداعر في تركمانستان، وثلاثة موقوفات في أوزبكستان الأولي بالتعاون مع جامعة غولستان والثانية بالتعاون مع معهد بحوث النباتات والكائنات بالتعاون مع معهد تربية الأغذية.

أرسل المركز الدولي للزراعة الملحية إلى المراكز المشاركة 50 نموًة وصنفاً وسلالة من المحاصيل والشجيرات والأشجار المتحملة للملوحة. كما أرسل 300 نموة نباتية مختلفة لإكثارها في مواقع التجارب. شمل المحاصيل المحلية أنواع الذرة الرفيعة والدخن اللولوي والشوندر العلفي المتحملة للملوحة. وشملت الأنواع غير التقليدية بعض أنواع شجيرات الرغل وأشجار الأكاسيا. واستخدمت في مواقع التجارب أيضاً بعض الأصناف والسلالات المحلية للمقارنة.

كازاخستان

اختيرت بعض أنواع المحاصيل المحلية والمتحملة للملوحة الملائمة لبيئات المنطقة بناءً على نتائج تجارب العام 2005.

كان نمو بدور سلالات الذرة الرفيعة ICSV 45 و ICSV 40516 و SP 3905 و ICSV 39105 و Speed Feed و Super Dan بينما كان نمو سلالات وأصناف جيداً فتراعب بين 75% و 95% ويمكن تصنيف نمو بعض السلالات كما يلي:

- Speed Feed, Super Dan, Sudan Graze, Pioneer 859
- ICSV 112, SP 3905, SP 47529
- النمو الضعيف: 29

توجهت إنجازات المداقة الخضراء لأفضل سلالات الذرة الرفيعة في حقول بعض المزارعين في جنوب كازاخستان بين 97 و 112 طن/هكتار، وانجازات المداقة الجافة بين 16 و 27 طن/هكتار وهو ما يعادل حوالي 500-600٪ من إنجازات الأصناف المحلية. وبين الجدول 11 أن

- Sudan Graze
- Super Dan
- ICSV 682
- Pioneer 858
- ICSV 3905

هي أفضل إنجازات للبذر في البيئات الملحية المعدلة.

وكان نمو سلالات الدخن اللولوي IP 6112, IP 19612, ICMV 7704, IP 6110, IP 19586, ICMV 155 Brist, HHVDTC Tall, MC 94 C, Daura Genepool, Sudan Pop الأفضل بإنتاجية تراوح بين 10 و 12.3 كجم/كم م² من المداقة الخضراء عند كثافة نباتية 65 - 100 نبتة/م².
وتراها أطوال النباتات بين 160 و 280 سم وعدد الاشواط بين 9 و 32. وبيّن الشكل 13: الإنتاجية أفضل 20 سلالات من الدخن اللولوي عند الملوحة المعتدلة (0.18-0.2 م، 0.21-0.22 م) التي كانت فيها الإنتاجية الأفضل لسلالات النبت (3.8 كغم/م2) و (ICVS 7704).

كان نمو أصناف وسلالات الشunread العلفي ضعيفاً ولم يتجاوز 45% بسبب نقص رطوبة التربة واستخدام طرق غير ملائمة للزراعة.

زرعت أيضاً ثلاثة أنواع من الرغل هي Atriplex nummularia و A. amnicola و A. undulate.

فلم يتجاوز نمو النوعين الأول والآخر 30% وذلك نقل البذورات إلى الحقل في شهر أغسطس لتراهمها على أن يتم البدء بتقسيمها خلال العام 2007.

الجدول 12: إنتاجية المادة العلفية الخضراء والغافة لسلالات الدخن الرقيقة المختارة في محطة بحوث أكنيبي في تركمانستان

<table>
<thead>
<tr>
<th>السلالات</th>
<th>نسبة الحالة العلفية (ن.م/كم²)</th>
<th>النسبية (ن.م/كم²)</th>
<th>النسبة (ن.م/كم²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 47105</td>
<td>172 Copro</td>
<td>140</td>
<td>12</td>
</tr>
<tr>
<td>ICSV 112</td>
<td>SP 47105</td>
<td>12</td>
<td>242</td>
</tr>
<tr>
<td>SP 39105</td>
<td>SP 47529</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Pioner 858</td>
<td>SP 39105</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>SP 40516</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>Sugar Graze</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>ICSV 205</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>Speed Feed</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>Super Dan</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>Speed Feed</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>ICSV 745</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>ICSV 682</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>-</td>
<td>Local variety</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

كان نمو أصناف وسلالات الذرة الرقيقة جيداً وخصوصاً Speed Feed, Super Dan, Sugar Graze, Pioneer 858, SP 40516, SP 39269, ICSV 745.

وكان نمو أصناف وسلالات الذرة الرقيقة أفضل من الصنف المحلي (الجدول 12).
وتراوحت إنتاجية أفضل عشر سلالات من النهضة من المادة الجافة بين 1.3 و 2.2 من هكتار وحده التقدير بين 540 و 1400 كجم/هكتار وذلك حسب مستويات الملوحة المستخدمة، لذلك اختيرت هذه المجموعة لإكثارها وتوزيعها على مواقع التجربة الأخرى في تركمانستان.

انتخبت أيضاً أفضل سلالات الدخن اللولي لإكثارها واستخدامها في مواقع أخرى عند مستويات الملوحة المختلفة ومنها 7104 وIP 6105 MC 94 C2, 11612, 6109, Sudan Pop 1, HHVDBC Tall.

مميزاً بالنسبة لباقي السلالات والأسناد المختبرة.

وكان نمو أصناف الفصة مميزاً مقارنة بالصنف Skeptr و Eureka و Khivinskii المحلي للفترة 1.9 كجم/م² وانتزاعية الصنف Skeptr 1.7 كجم/م².

بلغت نسبة نمو أشجار الأكاسيا 89% بعد زرعها في الطول يتراوح بين 16 و 18 سم شهرياً عند مرحلة المنتشرات الجزء، بين 55 و 70 سم شهرياً بعد تسجيل النمو الشبي، ولم تنتج زراعة أشجار الثوما والزهور وتوزيع في المنطقة المجاورة.

كان نمو شجورات الغزل جيداً وأفضلها للفترة: A. undulate بمعدل حوالي 82.8%.

وبلغت إنتاجية أنواع الغزل من المادة الحاضرة حوالي 1.6 كجم/م³ خلال أربعة أشهر، والتي استعدادها قطعان الماشي في المنطقة.

أوزبكستان

تراوح مسبح المياه الجوفية في موقع محطة أبحاث جامعة غولستان بين 1.7 و 2.2 م ومستوى الأملاح الكلية المذاب فيه بين 1400 و 1700 لتر/م³ وقد فقزت في ذلك الموقع بذرتين لتقييم عدد من أنواع المحاصيل العلفية وتقديم الأورا كأداة مصداق التسميد العضوية المحتملة.

1. تقييم بعض أنواع المحاصيل العلفية

اختبرت الأصناف والسلالات والأنواع التالية:

- 4 أنواع من المحاصيل الزيتية هي عباد الشمس البري (Helianthus cultus)
- والفول السوداني (Arachis hypogaea)
- والقرطم (Vulgaris)
- والسمسم (Carthamus tinctorius) (Sesamum indicum)

نمو أصناف الدخن اللولي في تركمانستان

مياه بحيرات آزشار في أوزبكستان
8 أنواع وأصناف من المحاصيل العلفية هي الذرة الصفراء (Zea mays) والمكنس (Phaseolus aureus) والفاصوليا (Sorghum technicum) والذرة السودانية (Sorghum sudanense) والشوكندر العلفي (crassa) والقصة (Beta vulgaris) والذخن الهندي (Medicago sativa) والشعير (Hordeum vulgare).

10 أصناف من القرطم (Carthamus tinctorius) من الشعير و 3 سلالات من المكنس (Sorghum bicolor) هي سلالات واحدة من الذرة IS 29781 و Grif 619 و Grif 612 (Pennisetum glaucum) الأفريقي.

صنفين من النقصة هما 2 و 3 من إيكاردا.

عدد من المحاصيل تزرعها مباشرة بعد حصاد القمح البذري شملت الذرة (سرعة النضج) وعباد الشمس (سرع النضج) واللويحة البلدية.

2. تقييم الأزول (Azolla)

استخدمت المعاملات التالية:

- الذرة (200 غ/م²) + الأزول (400 غ/م²)
- عباد الشمس (200 غ/م²) + الأزول (400 غ/م²)
- الذرة والفريدة (200 غ/م²) + الأزول (200 غ/م²)

بديع لنباتات حيد (Carthamus tinctorius) بديع لنباتات حيد (Carthamus tinctorius) ونحوهما الجيد وإنتاجيتهما المرتفعة من المادة الخضراء والجافة بالإضافة للإنتاجية المرتفعة للبذور.

وتتم البذور بمناطق المركز الدولي للزراعة الملحية بنمطها ونضجهما البكر (الجدول 13).

الجدول 13: مؤشرات النمو والانتاجية العلفية لنباتات القرطم في محطة أبحاث غوليوستان

<table>
<thead>
<tr>
<th>الصنف</th>
<th>الطول (سم)</th>
<th>الازهار (طن/هكتار)</th>
<th>النضج (طن/هكتار)</th>
<th>الجزارة (طن/هكتار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICBA-1</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-2</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-3</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-4</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-5</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-6</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-7</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-8</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-9</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>ICBA-10</td>
<td>79.0</td>
<td>32.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Local
ظهرت اختلافات واضحة في إنتاجية المادة العلفية والبذور لسلالتي الذرة الرفيعة 619 و 29781. تبين أن السلالة 619 تنتج المزيد من الشجيرة، وتعتبر أكثر إنتاجية. ونضجهما المبكر. وتختلف السلالات ذات أطوال النبات المرتفعة بقصر وعاج من فترة الإزهراء وإنتاجها المرتفعة من المادة العلفية والبذور عند مرحلة النضج.

وأدى إضافة الأوراق بكمية 200 غ/م³ إلى زيادة إنتاجية المادة العلفية في الشجيرة الفطرية، حيث ساهمت في الحماية من الرياح وتعزيز نمو النبات. كما تأثرت الشجيرة في نمو النباتات ونوعية المادة العلفية. وتعتبر هذه النباتات من النباتات المزروعة في مجال غير محلي تم تطوير تقنيات لزراعة النباتات في مياه غير محلية، وتعتبر من النباتات المزروعة في مياه غير محلية.

اختبرت في موطحنة جدة أشجار الأكاسيا في محطة أبحاث النباتات النباتية في أوزبكستان.

<table>
<thead>
<tr>
<th>الجدول 14: نمو أشجار الأكاسيا وشجيرات الرغل في النمو والصحة في موطن الأغ بيومindo</th>
<th>مرحلة النبات (سم)</th>
<th>النمو (سم)</th>
<th>نوع النبات</th>
<th>طول النبات (سم)</th>
<th>مساحة الأرض (م²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>39.4</td>
<td>25.6</td>
<td>Acacia ampliceps</td>
<td>80.7</td>
<td>46.1</td>
</tr>
<tr>
<td>10</td>
<td>16.9</td>
<td>8.9</td>
<td>Atriplex nummularia</td>
<td>9.3</td>
<td>5.2</td>
</tr>
<tr>
<td>30</td>
<td>9.3</td>
<td>9.4</td>
<td>A. amnicola</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>10</td>
<td>A. undulata</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

بعد شهرين من النمو

<table>
<thead>
<tr>
<th>الجدول 15: نمو أشجار الأكاسيا وشجيرات الرغل في النمو والصحة في موطن الأغ بيومindo</th>
<th>مرحلة النبات (سم)</th>
<th>النمو (سم)</th>
<th>نوع النبات</th>
<th>طول النبات (سم)</th>
<th>مساحة الأرض (م²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>70.6</td>
<td>10</td>
<td>Acacia ampliceps</td>
<td>11</td>
<td>5.3</td>
</tr>
<tr>
<td>8.4</td>
<td>98.3</td>
<td>8.7</td>
<td>Atriplex nummularia</td>
<td>11.8</td>
<td>8.2</td>
</tr>
<tr>
<td>14.9</td>
<td>92.6</td>
<td>10.3</td>
<td>A. amnicola</td>
<td>12</td>
<td>6.5</td>
</tr>
<tr>
<td>8.4</td>
<td>92.6</td>
<td>10.3</td>
<td>A. undulata</td>
<td>12</td>
<td>6.5</td>
</tr>
</tbody>
</table>

بعد 9 أشهر من النمو

وسوف تستعرض نتائج اختباراتها في تقرير العام 2007.

n نفذت التجارب أيضاً في أحواض صغيرة

مروية بسيطة الأواني الزراعية الملاحية.

وسوف توسع التجربة خلال العام 2007

نظراً للنتائج الأولية المشجعة.

خطة العمل للعام 2007

سيتم تنفيذ التجارب التالية في كافة الدول:

- اختيار الأساليب الزراعية المثلى
- استخدام الأرز والبذور المحاصيل المختلفة والدورات الزراعية لزيادة
- إنتاجية الأنواع المتحملة للملوحة.
- توسيع اكتسابها في البيئات الملاحية.
- التوسع في تنفيذ التجارب وتطوير الطرق الزراعية الملاحية لزيادة إنتاجية سلالات
- محصولي الذرة الرفيعة والدخن اللؤلؤي وأشجار الأكاسيا المقدمة من المركز الدولي
- للفلاح الملاحية.
- إكثار بذور النباتات المتحملة للملوحة واختبارها في حقول المزارعين.
- عقد الدورات التدريبية لفرق عمل متخصصة على الجوانب المتعلقة بتنفيذ المشروع.

رئيس جامعة غولنستان وعدد من الخبراء خلال زيارتهم لمقر المركز الدولي

للزراعة الملحية

اختبار النباتات الملحية في محطة كيريلكوم في أوزبكستان
إنتاج محاصيل البستنة
اختبار تحمل أشجار النخيل للملوحة (PMS06)

فترة المشروع: 2006-2001
الشركاء: وزارة البيئة والمياه
المصادر: أساسي

لمحات عن المشروع
• تميزت أصناف أبو معان وجبري وخنثي ولولو المحلية بارتفاعها الجيد وقصر جذعها الكبير، بينما تميزت أصناف خنثي وفرض وجبري وحصب ولولو بفضل إنتاجها للثمار.
• كان صنف أم الحمام أقل الأصناف المستدامة أثناء لم يتحمل مستويات الملوحة المنخفضة في الظروف البيئية المحلية. بينما تميزت أصناف عجوة المدينة وثبيتة سيف وثبيتة سلطان وسكي بثمرة الجيد. وكانت إنتاجية الأصناف المستدامة من النثر أقل من إنتاجية الأصناف المحلية وكان أفضلها عجوة المدينة وورثان وسكي.

أهمية المشروع
تنبغي الزراعة المستدامة لأشجار النخيل تعديلات مستمرة للأساليب الزراعية من أجل مواجهة التغيرات البيئية. فالملوحة وغيرها من العوائق الحيوية وغيرها الحيوية تتطلب تطوير الأصناف المزرعة وطرق إدارتها لتحقيق الاستدامة في هذه البيئات المتغيرة. ولهذا الحذر أن الجزيرة العربية هي موطن لتشكلية كبيرة ومتنوعة من أشجار النخيل.

تهدف هذه التجربة المستمرة لحوالي ست سنوات إلى توفير معلومات هامة عن تحمل عشرة أصناف من الخضرة (التجربة الأولى) وثمانية أصناف من أشجار النخيل المستدامة (التجربة 2).

تتضمن التجربة الأولى أصناف أبو معان وبركي وفرض وجبري وخخاص وحصب وخنثي ولولو وغزال وشولا يختبرها المركز بالتعاون مع وزارة البيئة والمياه.

وتتضمن التجربة الثانية أصناف أم الحمام وورثان وسكي وشريفي وعجوة المدينة ومكتوم وثبيتة سيف وثبيتة سلطانة من المملكة العربية السعودية لاختبار تحملها للملوحة في الظروف البيئية المحلية والتي لا تزال قليلة حتى الآن.
أهداف المشروع

- تقييم تحمل نخبة من أشجار النخيل في شبه الجزيرة العربية للملوحة.
- تحديد الآثار البعيدة للملوحة على نمو أشجار النخيل وإنتاجيتها.
- تحديد آثار مستويات الملوحة على جودة نمار النخيل.

إنجازات المشروع في العام 2006

رويت أصناف التجربة الأولى العشرين بمستويات ملوحة تعاقد 5 و 15 ديسيمتر/م في أواخر العام 2002. ورويت أصناف التجربة الثانية المستوردة الثمانية في العام 2003. وسجلت بيانات تموك شجرة على حدة بما فيها طول الشجرة ومحيط جذعها وإنتاجيتها للتمار وعدد السعف وتآقلمها مع الظروف المناخية ثلاث مرات سنوياً. كما جمعت عينات من

الشكل 14: متوسط ملوحة التربة (دسيمتر/م) لأصناف نخيل التجربة الأولى عند مستويات الملوحة والأعمق مختلفة

الجزيرة العربية موطن لتشكلة كبيرة ومتنوعة من أشجار النخيل

الشكل 15: متوسط طول الجذع لأصناف نخيل التجربة الأولى عند مستويات الملوحة المختلفة
القرية عند أعمار مختلفة في مراحل العام المختلفة للتحليل وتحديد اختلافات الخواص الفيزيائية والكيميائية للقرية. وجمع تمار الأشجار بعد نضجها وسجلت بيانات إنتاجيتها. وأرسلت العينات المجمعة إلى جامعة الإمارات لإجراء التحاليل الكيميائية عليها.

النتائج

بينت النتائج ازدياد ملوحة القرية بشكل منحنى حزقي للمستويات الموزعة المختلفة خلال سنوات التجربة الأربعة لكنها ظلت أقل من ملوحة مياه الري مما يشير إلى أن مياه الري المستخدمة تنااس طبيعة القرية الرملية السائدة في المنطقة (الشكل 26).

سجلت بيانات نمو الأصناف المختبرة في التجربتين الأولى والثانية بشكل دوري ومنها طول ومحيط الجذع وطول السفوف. وقد ظهرت أثار معاملات الملوحة واضحة في السنة الرابعة على كافة مؤشرات النمو.

الشكل 26: متوسط محيط جذوع أصناف نخيل التجربة الأولى عند مستويات الملوحة المختلفة

الشكل 27: متوسط إنتاجية ثمار أصناف نخيل التجربة الأولى عند مستويات الملوحة المختلفة

طرح ثمار أشجار النخيل في محطة أبحاث المركز.
وتتميز أصناف أبو معان ووجري وختيري وفرض ولول عن غيرها من الأصناف (الشكلين 15 و16).

ولا يزال إثمار أشجار النخيل في مراحله المبكرة لكن تميزت بعض الأصناف بإنتاجيتها المرتفعة عند كافة مستويات الملوحة ومنها خنيزي وفرض وجيري وخصاب ولولو مقارنة بباقي الأصناف بالرغم من تناقص الإنتاجية بشكل واضح عند ارتفاع الملوحة (الشكل 17).

ولا تزال الأصناف المستورة من المملكة العربية السعودية في التجربة الثانية في مراحل مبكرة من النمو لكن بدأ بعضها يطرح الثمار ومنها عجزة المدينة وروثان وسكري (الشكل 18).

مخطط 68: متوسط إنتاجية ثمار أصناف نخيل التجربة الثانية عند مستويات الملوحة المختلفة

الشجرة

وزراعة أشجار النخيل في محطة أبحاث المركز.
برограм الإعلام والربط الشبكي والمعلومات
برنامج الإعلام والربط الشبكي والمعلومات

الأهداف

- تعزيز التعاون مع المؤسسات والأفراد من خلال الاتفاقات الرسمية
- تعزيز التعاون بين المؤسسات المختلفة.
- تطوير برامج ومشاريع مشتركة لتبادل تقنيات الزراعة الملحيّة.
- تناول المعلومات المتعلقة بالزراعة الملحيّة من خلال الشبكات مع الأفراد والمؤسسات المهتمة بهذا المجال.

الإعلام

منذّرات التفاهم

وقع المركز خلال العام 2006 تفاهماً تهدف إلى تقوية الروابط مع المؤسسات المختلفة لتعزيز تبادل المعلومات وتطوير مشاريع مشتركة لنقل تقنيات الزراعة الملحيّة.

1. مدينة دبي للإغاثة

وقع المركز خلال العام مذكرة تفاهم مع مدينة دبي للإغاثة بهدف تنسيق عقد الدورات التدريبية المختلفة.

2. هيئة البحرين – أبو ظبي

يتناول المشروع (PMS36) المشاريع في الصفحات 24-27، معلومات مفصلة عن مذكرة التفاهم الموقعة.

3. أكاديمية طاجكستان للعلوم الزراعية

تتفاهم مشاكل الملوحة في طاجكستان عاماً بعد عام حيث تحولت الأراضي الزراعية الخصبة على مر الأيام إلى أراضي هامشية وحيرة مزروعة تدريجياً، ونشأت مشاكل الملوحة بسبب ارتفاع منسوب المياه الجوفية الناجمة عن زيادة مستوى الجري وضعف نظم المركز الزراعي. لذلك وقع المركز الدولي للزراعة الملحيّة في شهر يوليو مذكرة تفاهم مع أكاديمية طاجكستان لعلوم الزراعية تهدف إلى اختبار أساليب الزراعة الملحيّة في الزراعة المحلية واستصلاحها وزيادة إنتاجيتها.

السيدة بريتانا كاستلي، المديرة التنفيذية لمدينة دبي للإغاثة والدكتور محمد حسن العطارة المدير العام للمركز.

السيد واد جو ماجد المنصوري، الأمين العام لهيئة البحرين – أبو ظبي خلال توقيع مذكرة التعاون والدكتور فيصل طه مديرب البرامج الفنية للمركز الدولي للزراعة الملحيّة والدكتور ستيفان روزيت مديري مشروع مسح القرية في شركة جي آر الدولية.
المشتركة المشتركة

ينفذ المركز عدداً من المشاريع المشتركة في بنغلاديش ومصر والأردن والإمارات (الجدول 15).

الربط الشبكي

الشبكة العالمية للزراعة الملحية

تشهد الشبكة العالمية للزراعة الملحية إلى تعزيز التعاون بين الأفراد المهتمين بمشاريع الزراعة الملحية عالمياً.

www.biosaline.org يتضمن الموقع الإلكتروني للمركز الدولي للزراعة الملحية معلومات عن برامج ومشاريع المركز الملحية، كما يتضمن استمارة تسجيل إلكترونية لخوضي الشبكة لحفظ بيانات المشاركين في جدول مؤقت قبل تدقيقها وإدراجها لاحقاً في قاعدة بيانات الشبكة.

توفر الشبكة الفرصة للأفراد من ذوي الاهتمامات المشتركة للتعاون وال التواصل فيما بينهم. كما سوف يبتدئ المركز خلال العام 2007 بالإشراف على منتدى للحوار على شبكة الإنترنت تلبية لرغبة أعضاء الشبكة.

الجدول 15: المشاريع المشتركة للعام 2009

<table>
<thead>
<tr>
<th>الدولة</th>
<th>المشروع</th>
<th>الفترة</th>
</tr>
</thead>
<tbody>
<tr>
<td>بنغلاديش</td>
<td>تطبيق أساليب الزراعة الملحية في بعض الأراضي المحتلة في بنغلاديش (PMS09)</td>
<td>2003-2007</td>
</tr>
<tr>
<td>مصر</td>
<td>المشروع المثوالج الرائد لإدخال أنظمة إنتاج الأغلاف المحتلة للملوحة إلى المناطق المحتلة في شبه جزيرة سيناء (PMS37)</td>
<td>2006-2009</td>
</tr>
<tr>
<td>الأردن</td>
<td>زراعة أشجار النخيل في البيئات المالحة في الأردن (PMS23)</td>
<td>2003-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>اختيار تحل أشجار النخيل للملوحة (PMS06)</td>
<td>2001-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>تطبيقات الزراعة الملحية في مزرعة تموينية في المناطق المحتلة (PMS05)</td>
<td>مستمر</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>دراسة جدوى الزراعة الملحية في دولة الإمارات العربية المتحدة (PMS32)</td>
<td>2006-2004</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>المركز الدولي للزراعة الملحية (PMS16)</td>
<td>2003-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>جامعة الإمارات العربية المتحدة</td>
<td>2006-2004</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>وزارة البيئة والبيئة والمياه</td>
<td>2006-2004</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>رأس الخيمة</td>
<td>2004-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>الإمارات العربية المتحدة</td>
<td>2004-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>UAEMEA</td>
<td>2004-2006</td>
</tr>
<tr>
<td>الإمارات العربية المتحدة</td>
<td>UAEMEA</td>
<td>2004-2006</td>
</tr>
</tbody>
</table>
الجدول 16: أعضاء الشبكة العالمية للزراعة الملحية

<table>
<thead>
<tr>
<th>البلد</th>
<th>الأعضاء</th>
<th>الدولة</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطر</td>
<td>5</td>
<td>إندونيسيَّة</td>
</tr>
<tr>
<td>روسيا</td>
<td>1</td>
<td>إيران</td>
</tr>
<tr>
<td>السعودية</td>
<td>15</td>
<td>العراق</td>
</tr>
<tr>
<td>السنغال</td>
<td>26</td>
<td>إسبانيا</td>
</tr>
<tr>
<td>الصومال</td>
<td>2</td>
<td>أوروب</td>
</tr>
<tr>
<td>جنوب أفريقيا</td>
<td>12</td>
<td>الجزائر</td>
</tr>
<tr>
<td>موريتانيا</td>
<td>7</td>
<td>كندا</td>
</tr>
<tr>
<td>تونس</td>
<td>14</td>
<td>هولندا</td>
</tr>
<tr>
<td>تركيا</td>
<td>4</td>
<td>هولندا</td>
</tr>
<tr>
<td>الإمارات</td>
<td>51</td>
<td>هولندا</td>
</tr>
<tr>
<td>بريطانيا</td>
<td>12</td>
<td>إسبانيا</td>
</tr>
<tr>
<td>أمريكا</td>
<td>31</td>
<td>فنزويلا</td>
</tr>
<tr>
<td>أوزبكستان</td>
<td>3</td>
<td>غانا</td>
</tr>
<tr>
<td>فنزويلا</td>
<td>6</td>
<td>اليمن</td>
</tr>
<tr>
<td>اليونان</td>
<td>1</td>
<td>الفلبين</td>
</tr>
<tr>
<td>الهند</td>
<td>2</td>
<td>الهند</td>
</tr>
<tr>
<td>إندونيسيَّة</td>
<td>5</td>
<td>إنجلترا</td>
</tr>
<tr>
<td>أوزبكستان</td>
<td>12</td>
<td>أوزبكستان</td>
</tr>
</tbody>
</table>

وبمبارك أعضاء الشبكة العالمية للزراعة الملحية (الجدول 16) الوصول على خدمة التصنيف السريع لموقع AGRICOLA و AGRIS للبحث والبحث المخصصات. ويتوفر موقع CAB من خلال مكتبة المراكز. ويتوفر موقع AGRIS التابع لمنظمة الأغذية والزراعة (القانول) الوصول على المعلومات والمعلومات اثر النظرة المختلفة. كما يوجد موقع AGRICOLA معلومات زراعية متنوعة. وتغطي قاعدة بيانات CAB عددًا كبيرًا من المواضيع الزراعية المتعلقة بإدارة وحفظ المصادر الطبيعية. ويمكن لأعضاء الشبكة العالمية للزراعة الملحية الوصول على اتصال بموقع CAB أو البحث في ملخصات موقع AGRICOLA و AGRIS مكتبة المركز من خلال البريد الإلكتروني:

library@biosaline.org.ae
الشبكة الإسلامية للزراعة الملحية

تأسست الشبكة الإسلامية للزراعة الملحية في العام 2002 (1422 هـ) خلال الاجتماع العمومي العاشر للجنة الزراعية للمؤتمر الإسلامي (الكومسكي) الذي عقد في إسلام آباد بباكستان. وتحمل الشبكة إلى توفير منتدى للتعاون المشترك بين الدول في مجال الزراعة الملحية.

تهدف الشبكة الإسلامية للزراعة الملحية إلى:

- تنسيق بحوث الزراعة الملحية بين الدول والمؤسسات الأعضاء في الشبكة.
- تطوير قاعدة بيانات خاصة بالخبراء والمنظمات غير الحكومية العاملة في مجال الزراعة الملحية.
- إعداد دليل بالخبراء الزراعية الملحية في الدول الأعضاء.
- تنزيح المواد البشرية في الدول الأعضاء على مواضيع الزراعة الملحية.
- التعاون مع المؤسسات الدولية والجهات المانحة لتعزيز مشاريع الزراعة الملحية في الدول الأعضاء.

الإنجازات العام 2006

أصدرت الشبكة الإسلامية للزراعة الملحية الطبعة الأولى من قاعدة بيانات خبراء الزراعة الملحية للعام 2005 ووزع النسخ منها على أفراد مدمنوا خلال الاجتماع الثاني عشر للكومسكي الذي عقد بإسلام آباد في شهر فبراير 2006. وضمن القرص المدمج معلومات قيمة عن خبراء الزراعة الملحيةمبذل عن اختصاصاتهم وأبحاثهم ومعلوماتهم العلمية.

أصدرت الشبكة خلال العام 2006 دراسة استقصائية عن جودة الزراعة الملحية في كامب فريدي، بالتعاون مع مؤسسة محيطات الصحراء ومجموعة الزراعة الملحية البيئية الهولندية. تضمنت الدراسة التحليلية وجهاز الأراضي للزراعة وأنظمة الرعي والصرف الزراعي والبيئيات المناسبة لزراعة الزراعة الملحية بالإضافة إلى المناقع الاقتصادية والاجتماعية للمشروع ونتائجه المتوقعة.

وتم تنظيم أخبار الشبكة الإسلامية للزراعة الملحية وأخبار الشبكات المتماثلة في موقع المركز الإلكتروني على شبكة الإنترنت www.biosaline.org كما تنشر في نشرة المركز الدورية أخبار الزراعة الملحية.
المشاريع المفتوحة لعام 2007

سوف تنظم الشبكة الإسلامية للزراعة المالحة خلال العام 2007 ورشة عمل استشارية لمناقشة أوضاع واقع الزراعة المالحة في الدول الإسلامية لموجة التحديات العالمية والراهنة بحضور قادة الخبراء والمسؤولين في الدول الأعضاء بمنظمة المؤتمر الإسلامي للتعرف بدور البنك الإسلامي للتنمية ومنظمة المؤتمر الإسلامي في هذا المجال، كما سوف تستمر الشبكة في تحديث بيانات الخبراء وعقد الندوات وورش العمل وتحضير مقترحات المشاريع المشتركة.

هيئة المعلومـات

نشاطات العام 2006

حصلت مكتبة المركز خلال العام على مصادر جديدة للمعلومات ووفرتها لموظفينا المركز وتأتي هذه المعلومات بعد تحليلها وتصنيفها وتوثيقها. كما احتفظت المكتبة برئاسة متكاملة لإدارة المكتبات. وتشمل هذه المكتبات توصيل المعلومات إلى المعلومات المطلوبة من مختلف المستخدمين والمستفيدين من خدمات المكتبة وسيدة العمل بخلال العام 2007.

قاعدة بيانات الاعلام

تعتبر قاعدة بيانات الأعمال المركزية الأساسية التي يعتمد عليها المركز في توزيع المطبوعات والتقارير السنوية والنشرات الإخبارية (الجدول 17) بالإضافة إلى أنها أداة

جدول رقم 17: توزيع التقرير السنوي ونشرة أخبار الزراعة المالحة خلال الأعوام 2000-2006

<table>
<thead>
<tr>
<th>المجموع</th>
<th>عدد الدول</th>
<th>عدد الدول</th>
<th>عدد الدول</th>
<th>عدد الدول</th>
<th>عدد الدول</th>
</tr>
</thead>
<tbody>
<tr>
<td>عربي</td>
<td>866</td>
<td>17</td>
<td>61</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>إنكليزي</td>
<td>315</td>
<td>13</td>
<td>120</td>
<td>51</td>
<td>49</td>
</tr>
</tbody>
</table>

جدول رقم 18: وزار المركز الدولي للزراعة المالحة خلال الأعوام 2000-2006

<table>
<thead>
<tr>
<th>المجموع</th>
<th>الوزارات</th>
<th>الهئيات الدبلوماسية</th>
<th>المنظمات الدولية/الإقليمية</th>
<th>البنك الإسلامي للتنمية</th>
<th>دولة الإياتارات</th>
<th>جهات أخرى</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>168</td>
<td>18</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>136</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>119</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>105</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>99</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>93</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
للتواصل مع العملاء وحفظ بيانات وعناوين المهمين بالزراعة الملحية والممولين. أنشأ المركز قاعدة البيانات هذه في العام 2000 لاستخدامها من كافة موظفي المركز ثم طورها في العام 2003 لتضم بيانات المشاركين بالدورات التدريبية التي ينفذها المركز وسجلًا بالزيارات الرسمية (الجدول 18) وملخصًا عن تفاصيل المواضيع المطروحة للنقاش خلال هذه الزيارات.

قاعدة بيانات الصور

تحتوي قاعدة بيانات الصور على أكثر من 2000 صورة لمشاريع المركز وأنشطته المختلفة والمؤثرة حسب المشروع والتاريخ وهي تشكل مصدراً أساسياً لتحضير المطبوعات والتقارير والعروض التقريبية.

المعارض

- معرض تكنولوجيا المياه والطاقة والبيئة (وينكس) 2006، دبي، مارس
- الاجتماع السنوي لمجلس محافظي البنك الإسلامي للتنمية، الكويت، مايو
- الاجتماع السنوي العام للمجموعة الاستشارية للبحوث الزراعية (سيجار)، الولايات المتحدة الأمريكية، ديسمبر

الدكتور محمد حسن العطار المدير العام للمركز الدولي للزراعة الملحية مع معايله الدكتور محمد سعيد الفندي وزير البيئة والمياه ودورة الإمارات العربية المتحدة (اليمن) والدكتور أحمد محمد علي رئيس البنك الإسلامي للتنمية (الثاني من اليسار) والاستاذ فوري السلطان رئيس مجلس الإدارة (اليسار)
المطبوعات
• النبئات المتحالفة للملوية في دولة الإمارات العربية المتحدة (إنكليزي)
• التقرير السنوي للمركز الدولي للزراعة المثلجة 2005 (عربي وإنكليزي)
• أخبار الزراعة المثلجة، المجلد 7، العدد 1 (عربي وإنكليزي)
• أخبار الزراعة المثلجة، المجلد 7، العدد 3 (عربي وإنكليزي)
• دولة الإمارات العربية المتحدة والمركز الدولي للزراعة المثلجة، نموذج فريد لشراكة فاعلة (عربي وإنكليزي)

المقالات العلمية والأبحاث المنشورة في البحوث والكتب العلمية

المقالات العلمية والأبحاث المنشورة في البحوث:

- شهاب الدين، م.، جريدة ع. 2006. الاختلافات التركيبية الظاهرية لأصناف سلالات تغريدة منطقة الباطنة العمانية، التربية العامة، الزراعة والح(delegate)
- مهندس. 2006. تأثيرات التغذية بشجيرات الزراعة المثلجة وعبث السوروبيلس على نمو سلالات محلية من الفسامل، وقائع المؤتمر البحثي السنوي السابع، جامعة الإمارات العربية المتحدة، البحرين، الإمارات.
- شهاب الدين. 2006. الأطر الزراعية المحلي والعاملات المتصلة للملوية: إنتاج النمو الدائم في دولة الإمارات العربية المتحدة، المؤتمر الآسيوي الثاني عشر لعلوم الحيوان، كوريا الجنوبية.

- دخيل ع.، الحضري، م.، شهاب الدين. 2006. الأطر الزراعية المثلية لزراعة إنتاجية عشبي السوروبيلس والديستيكس المماثل لمملكة وقائع المؤتمر البحثي السنوي السابع، جامعة الإمارات العربية المتحدة، البحرين، الإمارات.

الكتب العلمية:

المخطوطات العلمية:

- شهاب الدين. 2006. نظام الزراعة الداخلي لألف الزراعة المثلجة، المؤتمرات الدائمة للزراعة المثلجة، الإنتاج الزراعي المستدام في الأراضي المتينة، فيصل أ.، باكر. 2006. تطوير المخطوطات، الصفحات 5.
برنامج التدريب
وحلقات العمل والإرشاد
برنامج التدريب وحلقات العمل والإرشاد

الأهداف

- عقد الدورات التدريبية للخبراء والفنّيين في مجالات الزراعة المحلية.
- عقد المؤتمرات والاجتماعات لتبادل المعلومات المتعلقة بالزراعة المحلية.
- تحديد أولويات الأبحاث العلمية في مجال الزراعة المحلية محليًا وعالميًا.

الدورات التدريبية وورش العمل

ورشة عمل عن حركة الكثبان الرملية في دولة الإمارات العربية المتحدة

التاريخ: 18 يناير
المكان: دبي
الشراكة: الهيئة الاتحادية للبيئة في دولة الإمارات العربية المتحدة, شركة تقنيات المسح العالمية
المصادر: الهيئة الاتحادية للبيئة, أساسي

ورشة عمل تدريبية حول مفاهيم مسح النزعة

التاريخ: 16 فبراير
المكان: المركز الدولي للزراعة المحلية
الشراكة: هيئة البيئة - أبو ظبي
المصادر: هيئة البيئة - أبو ظبي

حضر الجلسة الافتتاحية للدورة في مقر المركز بـ 120 شراؤً من الخبراء، والمسؤولين من هيئة البيئة - أبو ظبي، والمراكز الدولية للزراعة المحلية، وشارك بها 17 فريقًا من وزارة البيئة والمياه، وجامعة الإمارات العربية المتحدة والبلديات في الدولة.

تناولت الورشة مواضيع إعداد الخرائط باستخدام الأقمار الصناعية، نظام المعلومات الجغرافية، إدارة قواعد البيانات، نظام المراقبة الديناميكي الآلي للزراعة المحلية. إجراءات مسح النزعة وتحليل النتائج.

ورشة تدريبية عن الزراعة المحلية

التاريخ: 3-4 أبريل
المكان: البحرين
الشراكة: وزارة البلديات والشؤون الزراعية
المصادر: وزارة البلديات والشؤون الزراعية

ورشة عمل مفاهيم مسح النزعة في مقر المركز الدولي للزراعة المحلية
دورة تدريبية متقدمة عن الزراعة الملحة في دول وسط آسيا وأقليم القوقاز

التاريخ: 22-15 مايو
المكان: طشقند، أوزبكستان

الشركاء: المعهد الدولي لإدارة المياه (إيبي)، المركز الدولي للبحوث الزراعية في المناطق الجافة (إيكاردا)، مراكز البحوث الزراعية الوطنية في دول وسط آسيا
المصادر: صندوق الأوبك للتنمية الدولية، البنك الآسيوي للتنمية

شارك بالدورة 44 خبيرًا وباختصار وفنيًا من أرمينيا وأذربيجان وجورجيا وكازاخستان وقيرغيزستان وطاجيكستان وأوزبكستان وتنظيمها المركز الدولي للزراعة الملحة بالتعاون مع إيكاردا والمعهد الدولي لإدارة المياه (إيبي) بتمويل من صندوق الأوبك للتنمية الدولية والمصرف الآسيوي للتنمية.

ندوة أنظمة الإنتاج التقليدية وغير التقليدية للبيئات المالحة

التاريخ: 27 مايو
المكان: المجتمع السنوي الحادي والثلاثون لمجلس محافظي البنك الإسلامي
للتنمية بالكويت

الشركاء: معهد الكويتي للبحوث العلمية
المصادر: المركز الدولي للزراعة الملحة، البنك الإسلامي للتنمية

ورشة عمل عن تنمية روح العمل الجماعي

الطريقة: 6-7 يونيو
المكان: المركز الدولي للزراعة الملحة
المصادر: شركة بيبال المحدودة، المركز الدولي للاستدامة في الزراعة
دورة تدريبية لدعم الخبرات الفنية في النيجر من أجل معالجة مشاكل
النحوة باعتباد أساليب الزراعة المحلية

الenerima: 21-27 أغسطس
المكان: نيامي، النيجر

المصدر: الكومسطك

نظم المركز الدولي للزراعة المحلية دورة تدريبية في النيجر،
إحدى دول شبه الصحراء الأفريقية. يتمثل من برنامج معه
البنك الإسلامي للتنمية الذي تشرف عليه اللجنة الوطنية
للتواصل العلمي والتكنولوجي التابعة لمنظمة المؤتمر
الإسلامي (الكومسطك).

وتعدّد النحوة من إحدى أفراد دول العالم كما تعاني أيضاً
من تقلبات مشاكل النحوة بسبب طرق وكيمياء الري غير
المناسبة التي أدت إلى ارتفاع مستوى المياه الجوفية. ونظرًا
لتوفر المركز الوطني للبحوث الزراعية المتقدمة بالناضج
الزراعة المحلية، فقد وضع المركز الدولي للزراعة المحلية
مذكرة تفاهم مع حكومة النيجر لتنسيق التعاون وتبادل
المعلومات في هذا المجال.

وقد تعدّد النحوة من إحدى أفراد دول العالم كما تعاني أيضاً
من تقلبات مشاكل النحوة بسبب طرق وكيمياء الري غير
المناسبة التي أدت إلى ارتفاع مستوى المياه الجوفية. ونظرًا
لتوفر المركز الوطني للبحوث الزراعية المتقدمة بالناضج
الزراعة المحلية، فقد وضع المركز الدولي للزراعة المحلية
مذكرة تفاهم مع حكومة النيجر لتنسيق التعاون وتبادل
المعلومات في هذا المجال.

ولذا يعدّ المشاركين في هذه الدورة بحثًا عن معالجة
مشاكل النحوة في مجال الزراعة المحلية.

تضمن المراحل التالية:

- تعزيز الخبرات الفنية للمركز الوطني للبحوث الزراعية في
 النيجر في مجال الزراعة المحلية.
- تطبيق تقنيات الزراعة المحلية في المناطق المتمتعة.
- تحسين طرق الري والصرف لاستصلاح الأراضي المتمتعة.
- لاحقاً، مواجهة الكومسطك والبنك الإسلامي للتنمية على
 موسوعة المشروع المقرر، يبدأ المركز تنفيذ المرحلة الأولى
 بنظم دورة تدريبية في مدينة نياحي بالنيجر شارك بها
 عدد من خبراء و الفنيون في المركز الوطني للبحوث الزراعية
 ووزارة الزراعة والموارد الوطنية وجامعة نياحي والبكت الإقليمي
 للمعهد الدولي للبحوث المطابق للمناطق المدارية شبه
 القاحلة (كيريسات).

سعادة السيد موسى أبو وزير التنمية الزراعية بالنيجر

يتسدّد الدكتور شبيب إسماعيل والدكتور سامبا في النيجر
عضو المركز الدولي للزراعة المحلية بحضور الدكتور سامبا في النيجر.

الدكتور سامبا يدعي شبيب إسماعيل يقدم شهادة تكريم
للدكتورة هانوتا سامبا من المركز الوطني للبحوث الزراعية
تمت الدورة التدريبية محاضرات نظرية وعملية قدمها خبراء المركز الدولي للزراعة onslaught بالتعاون مع جامعة الملك فيصل والمملكة المتحدة والولايات المتحدة، وتضمن مناقشة مواضيع مثل:

1. الأبحاث الأساسية والتعلم في مجال الزراعة.
2. تطبيق التكنولوجيا في الزراعة.
3. تطوير الموارد البشرية في الزراعة.
4. تطوير التكنولوجيا في الزراعة.
5. تطوير التكنولوجيا في الزراعة.
6. تطوير التكنولوجيا في الزراعة.
7. تطوير التكنولوجيا في الزراعة.
8. تطوير التكنولوجيا في الزراعة.
9. تطوير التكنولوجيا في الزراعة.
10. تطوير التكنولوجيا في الزراعة.

ورشة عمل مختصرة حول الإدارة المتكاملة لمصادر المياه المالحة لإنتاج الأغذية في منطقة غرب آسيا وشمال أفريقيا

الفترة: 9-15 سبتمبر
المكان: سوريا
الشركاء: الهيئة العامة للبحوث العلمية الزراعية في سوريا
المصدر: الصندوق العالمي للتنمية الزراعية، الصندوق العربي للتنمية الاقتصادية والاجتماعية، الصندوق الأوروبي للتنمية الدولية

ورشة عمل حول جودة التحاليل المخبرية

الفترة: 1-30 أكتوبر
المكان: كلية العلوم الزراعية، جامعة السلطان قابوس
الشركاء: جامعة العلوم الزراعية، جامعة العلوم الزراعية، جامعة العلوم الزراعية
المصدر: الصندوق العربي للتنمية الدولية

الإسماعلية، الكويت، عدد الصحف الصغيرة، ورشة العمل.

ركزت ورشة العمل على الجوانب المتعلقة بجودة التحاليل المخبرية والإجراءات المتبعة لتقنيات مراقبتها باستخدام الأساليب الإحصائية.

ورشة عمل في المهارات الإعلامية

الفترة: 15-22 نوفمبر
المكان: المركز الدولي للزراعة الملحة
المصدر: المركز الدولي للزراعة الملحة

المشاركون في ورشة عمل جودة التحاليل المخبرية
دورة تدريبية حول استخدام مصادر المياه المالحة في الإنتاج الزراعي

اللغة: العربية
التاريخ: 25-19
المكان: الإمارات العربية المتحدة
الموضوع: الشراكة المدنية للتنمية الزراعية، وزارة البيئة والمياه، المنظمة العربية للمياه، صندوق الأوليك للتنمية الدولية

التدريب المهني
الفترة: نوفمبر - ديسمبر
المكان: المركز الدولي للزراعة الملوكية، البنك الإسلامي، الكويت

المحاصيل الزراعية

التدريب المهني

الدكتور محمد العطار يسلم شهادة تدريب لأحد المتربيين من إندونيسيا

ويتضمن المنحة المقدمة من البنك الإسلامي

للتنمية والكويك بجانباً هاماً يتعلق بالتدريب المهني على مفاهيم الزراعة الملوكية

للأعمال في الدول الأعضاء بمنظمة المؤتمر الإسلامي وذلك بمثابة الخبرات المتواجدة في بعض هذه الدول لإدارة موارد المياه المالحة والأراضي الممتلئة لإنتاج المحاصيل الزراعية مع تزويج باختصار تدهور البيئات الزراعية والأراضي الزراعية ما لم

تتخذ الإجراءات السريعة والمناسبة لحمايتها.

ويعد تدريب المدربين على مفاهيم الزراعة الملوكية إحدى الطرق السريعة لنشر العلم

والعرفة إذ يمكن لهذه المدربين أن ينقلوا الخبرات المتخصصة إلى عدد أكبر من الفئات

في بلدانهم. كما يساهم هذا الأسلوب غير المباشر في التدريب في تخفيف نفقات نقل

المعرفة وزيادة وسيلة انتشارها.

ويمكن تلبية أهم أهداف دورات التدريب المهنية في:

• زيادة عدد الأفراد المؤهلين لاستخدام أساليب الزراعة الملوكية في دول منظمة

المؤتمر الإسلامي.

• إثارة الفرصة لهؤلاء الأفراد للاستفادة من خبرات الخبراء والعمل في محطات

البحوث الزراعية المتقدمة.

• تعزيز الخبرات الوطنية بتقنيات الزراعة الملوكية.

• تحديد الجوانب المحلية الهامة في مجال الزراعة الملوكية لدول منظمة المؤتمر

الإسلامي.

• زيادة الوعي بأساليب الزراعة الملوكية واستصلاح الأراضي الممتلئة

بهدف زيادة الإنتاج الطيني والأغذية.
الإدارة المالية
المجلس الإدارة

الشؤون الإدارية

استمر القسم الإداري والمالى في تقديم الدعم اللازم لأعمال قسم البرامج الفنية بالمركز وتمثل أهمها بزيادة الشركات التشغيلية وتنفيذ كافة أعمال الصيانة والتجديد المؤجلة من السنوات السابقة بسبب نقص الميزانية.

مكتب العلاقات الحكومية في أبو ظبي

تابع مكتب العلاقات الحكومية في أبو ظبي تعزيز علاقات المركز المميزة مع الوزارات والهيئات الحكومية في الدولة، والمشاركة في المؤتمرات الدولية والمعارض ومنها ورشة العمل التي عقدت في دولة الكويت حول مفاهيم واستراتيجيات العلاقات في المؤسسات الحكومية. كما انتقل مقر المكتب خلال العام 2006 إلى مقر جديد لبستضيف الكادر الإداري والتنفيذي لشركة جي آم الدولية المنفدة مشروع مسح التربة في إمارة أبو ظبي.

وحدة المعلوماتية

تمكنت وحدة المعلوماتية من تنفيذ بعض الأعمال المؤجلة من السنوات السابقة بسبب قيود الميزانية تضمنت تجديد أجهزة الكمبيوتر المركزية وتحديث نظام الشبكات وحفظ الملفات وتحديد برامج وملفات العمل، بالإضافة إلى تجديد أجهزة الكمبيوتر وبرامج العمل لمكتب المركز. وأبلغت الوحدة حوالي 400 ألف درهم على هذه التعديلات خلال العام.

الأمان

يقدم المركز خدمات التأمين الصحي والتأمين على الحياة لكافة موظفيه. وقد أشرعت عقود التأمين لهذا العام مع شركة هيدنت للتأمين الصحي والتأمين على الحياة، وأشرعت عقود التأمين على المرافق والموظفين مع شركة نوريش بونيون.

الكمبيوتر المركزى الجديد للمركز
شؤون الموظفين

الموظفون المغادرون

- السيد غازي أبو رمان، مهندس زراعي، فبراير
- الآنسة عبير أبو الزلف، سكرتيرة تنفيذية، مارس
- السيد جوغو إبراهيم، أخصائي العلاقات مع الجهات المانحة، أبريل
- السيدة سهاء الزاهد، مشرفة الخدمات الإدارية، أبريل
- الآنسة أيات عبد رشيد، مساعدة إدارية، مكتب أبو طبي، يونيو
- السيد زيتا يونس، المدير الإداري والمالي بالنخبة، نوفمبر

الموظفون الجدد

- الدكتور نور العالم أحمد، خبير إدارة الري، فبراير
- الدكتورة كريستينا تودريتش، خبيرة نبات، مكتب طفقة، مارس
- السيد عبد القادر عبد الرحمن، فني مهندسة البحوث، مارس
- السيد بسام راقي، مساعداً تقلي، مارس
- السيد عبد الستار شبانغول، سائق في مكتب أبو طبي، مارس
- الآنسة لينا الإشقاقي، مساعدة استقبال، مايو
- السيدة بدرية بوشي، مساعدة إدارية في مكتب المدير العام، يونيو
- السيد غلام شابير، فني زراعي، يونيو
- الدكتور ناندوشي راو، خبير المصادر الوراثية النباتية، يوليو
- الآنسة بيداء إسماعيل خليل، مساعدة إعلامية، يوليو
- الآنسة هبه كمال عبد الكريم، مساعدة إدارية، مكتب أبو طبي، أغسطس

الترقيات

- ترقية السيد غازي جواهر الجابري من وظيفة مساعد إعلامي إلى وظيفة منسق إعلامي
- تعيين السيدة كارلا مليور كأخصائية مكتبية بدوام كامل بعد أن كانت بدوام جزئي
- ترقية السيد خالد علي من وظيفة سائق إلى وظيفة مساعد العلاقات العامة لمكتب المدير العام

الوظائف الشاغرة

- خبير المياه
- المدير الإداري والمالي
- منسق الموارد البشرية
- فني صيانة عامة
- سائق

ظلت وظيفة نائبة المدير العام شاغرة خلال العام وقد أوصت إدارة البنك الإسلامي للتنمية بشغل هذه الوظيفة خلال العام 2006.
أعلن المدير العام الدكتور محمد حسن العطار عن رغبته بالتقاعد في شهر أغسطس، لكنه استمر في عمله إلى نهاية العام بناءً على رغبة إدارة البنك الإسلامي للتنمية لإعادة الفرصة الكافية لإيجاد البديل المناسب.

لذلك تشكلت لجنة لاختيار المدير العام الجديد برئاسة السيد فوزي السلطان رئيس مجلس الإدارة وعضوية الدكتور محمد حسن العطار حيث ابتدأت أعمالها خلال شهر أغسطس بالتفاضل بين الطلبات المقدمة للمنصب. وبعد مقابلة عدداً من الأفراد المرشحين للمنصب خلال شهر سبتمبر، اختارت اللجنة الدكتور شوفي البرغوثي ورفعت توصياتها لإدارة البنك الإسلامي للتنمية التي أقرتها وتعيين الدكتور شوفي البرغوثي مديراً عاماً جديداً للمركز الدولي للزراعة الملحيّة خلفاً للدكتور العطار.
الميزانية

تقرير الواجهة الخارجية

أصدرت لجنة الواجهة الخارجية لميزانية المركز الدولي للزراعة الملحة تقريرها المالي عن أعمال المركز لعام 2006 الذي وافق عليه مجلس الأئمة لاحقاً.

الميزانية الكبيرة

بلغت ميزانية المركز التشغيلية والأساسية 4,231,788 دولار أمريكي في العام 2006 مقارنة بميزانية العام 2005 التي بلغت 4,099,819 دولار أمريكي (الملحق 4) محققة وفقاً مقداره 368,371 دولار أمريكي بسبب بعض المناصب التي ظلت شاغرة بعض الوقت خلال العام بما فيها منصب أخصائي العلاقات مع الجهات المالية ومنصب المدير الإداري والمالي ومشرف الخدمات الإدارية بالإضافة إلى عدم شغل منصبي خبير إدارة الري وخبراء الموارد الزراعية التنموية منذ بداية العام، كما ظلت وظيفة خبير المياه شاغرة طوال العام، بالرغم من إدراجها ضمن الميزانية المعتمدة. كما حقق المركز أيضاً وفراً في ميزانية نفقات الصيانة ومصاريف مجلس الإدارة.

الشكل 29: مصادر التمويل لعام 2006

الشكل 28: مساهمات الجهات المالية للأعوام 2000-2006
المصادر الرأسمالية

بلغت ميزانية المركز الرأسمالية 700,384 دولار أمريكي من الميزانية المعتمدة 704,800 دولار أمريكي حقيقة وفرا قدره 2,116 دولار أمريكي أنتجت معظمها على شراء أجهزة الكمبيوتر ومعدات وتجهيزات للمخابر بالإضافة إلى مواقف البنية التحتية.

تجربة الموارد المالية

يبين الجدول 19 والشري巴西 70 جمالي مساهمة الجهات المانحة للعام 2006 والأعوام السابقة.

<table>
<thead>
<tr>
<th>الجدول 19 المصادر التمويلية للأعوام 2006-2000 (دولار أمريكي)</th>
</tr>
</thead>
<tbody>
<tr>
<td>البنك الإسلامي للتنمية</td>
</tr>
<tr>
<td>الصندوق العربي لإعطاء الأعمال الاجتماعي والاجتماعي</td>
</tr>
<tr>
<td>صندوق البنك العربي الدولي</td>
</tr>
<tr>
<td>الهيئة الدولية للطاقة</td>
</tr>
<tr>
<td>شركة تطوير غاز</td>
</tr>
<tr>
<td>بلدية أبو ظبي (الإمارات)</td>
</tr>
<tr>
<td>شركة بنك (السعودية)</td>
</tr>
<tr>
<td>إدارة التنمية الدولية بالملكه المتحدة</td>
</tr>
<tr>
<td>برامج تطوير المجتمعات النامية في الشمال</td>
</tr>
<tr>
<td>برنامج التعليم الإقليمي للاستثمار في سياقات إقليمية</td>
</tr>
<tr>
<td>برنامج التعليم الإقليمي للاستثمار في سياقات إقليمية</td>
</tr>
<tr>
<td>إدارة الدول العربية</td>
</tr>
<tr>
<td>وزارة الخارجية في أبو ظبي (الإمارات)</td>
</tr>
<tr>
<td>شركة تنمية (الإمارات)</td>
</tr>
<tr>
<td>بنك دبى الإسلامي (الإمارات)</td>
</tr>
<tr>
<td>الهيئة العربية للاستثمار والأعمال التجارية</td>
</tr>
<tr>
<td>البنك الإسلامي للتنمية / الكوستيكي</td>
</tr>
<tr>
<td>هيئة البيئة في أبو ظبي (الإمارات)</td>
</tr>
<tr>
<td>البنك العربي للاستثمار / الكوستيكي</td>
</tr>
<tr>
<td>الديموغرافيا الإقليمية (الإمارات)</td>
</tr>
<tr>
<td>برنامج التعليم الإقليمي للاستثمار في سياقات إقليمية</td>
</tr>
<tr>
<td>برنامج تعليمي من البنك الإسلامي للتنمية</td>
</tr>
<tr>
<td>المجموع</td>
</tr>
</tbody>
</table>
الملاحظات
الملحق 1: محتويات بنك المصادر الوراثية النباتية (ديسمبر 2006)

<table>
<thead>
<tr>
<th>نوع المحصول</th>
<th>عدد الأنواع</th>
<th>عدد السلالات</th>
<th>العائلة</th>
<th>الجنس</th>
</tr>
</thead>
<tbody>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>65</td>
<td>Fabaceae</td>
<td>Acacia</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>11</td>
<td>Liliaceae</td>
<td>Asparagus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>68</td>
<td>Fabaceae</td>
<td>Astragalus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>36</td>
<td>Chenopodiaceae</td>
<td>Atriplex</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Avena</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>108</td>
<td>Chenopodiaceae</td>
<td>Beta</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>100</td>
<td>Brassicaceae</td>
<td>Brassica</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>127</td>
<td>Fabaceae</td>
<td>Cajanus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>652</td>
<td>Fabaceae</td>
<td>Carthamus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>2</td>
<td>Poaceae</td>
<td>Cenchrus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>116</td>
<td>Chenopodiaceae</td>
<td>Chenopodium</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>10</td>
<td>Poaceae</td>
<td>Chloris</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Cicer</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Coelachrysum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>99</td>
<td>Fabaceae</td>
<td>Cyanopsis</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>5</td>
<td>Poaceae</td>
<td>Dicranium</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>146</td>
<td>Poaceae</td>
<td>Echinochloa</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Chenopodiaceae</td>
<td>Haloxylon</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>16</td>
<td>Fabaceae</td>
<td>Hedysarum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>208</td>
<td>Fabaceae</td>
<td>Hordeum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>2</td>
<td>Fabaceae</td>
<td>Hymenocarpos</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>16</td>
<td>Fabaceae</td>
<td>Lablab</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>3</td>
<td>Poaceae</td>
<td>Lasiorus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Lathyrum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>5</td>
<td>Poaceae</td>
<td>Leptochloa</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>5</td>
<td>Fabaceae</td>
<td>Leucaena</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>4</td>
<td>Fabaceae</td>
<td>Lotus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Lupinus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Chenopodiaceae</td>
<td>Maireana</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>27</td>
<td>Fabaceae</td>
<td>Medicago</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>577</td>
<td>Fabaceae</td>
<td>Melilotus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Ochthochloa</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Panicum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>2</td>
<td>Poaceae</td>
<td>Paspalum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Pennisetum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Prosopis</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>7</td>
<td>Fabaceae</td>
<td>Rhanterium</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>27</td>
<td>Fabaceae</td>
<td>Scorpiurus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Sesbania</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>28</td>
<td>Poaceae</td>
<td>Simmondsia</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Sorghum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>4</td>
<td>Poaceae</td>
<td>Sporobolus</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>5</td>
<td>Poaceae</td>
<td>Stipagrostis</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>23</td>
<td>Fabaceae</td>
<td>Trifolium</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>6</td>
<td>Fabaceae</td>
<td>Trigonella</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>x Triticosecale</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Poaceae</td>
<td>Triticum</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Vicia</td>
</tr>
<tr>
<td>أغلاف</td>
<td>1</td>
<td>1</td>
<td>Fabaceae</td>
<td>Vigna</td>
</tr>
<tr>
<td>المجموع</td>
<td>209</td>
<td>8,653</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الملحق 2: ملخص عن بيانات الطقس في محطة بحوث المركز للعام 2006

<table>
<thead>
<tr>
<th>الشهر</th>
<th>درجات الحرارة (درجة مئوية)</th>
<th>البحارة الشمسي</th>
<th>التلخير (م)</th>
</tr>
</thead>
<tbody>
<tr>
<td>جانفي</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>فبراير</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مارس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أبريل</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مايو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يونيو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يوليو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أغسطس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>سبتمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أكتوبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>نوفمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>ديسمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

الUnmarshaller: ملخص عن بيانات الطقس في محطة بحوث المركز للعام 2006

<table>
<thead>
<tr>
<th>الشهر</th>
<th>درجات الحرارة (درجة مئوية)</th>
<th>البحارة الشمسي</th>
<th>التلخير (م)</th>
</tr>
</thead>
<tbody>
<tr>
<td>يناير</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>فبراير</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مارس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أبريل</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مايو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يونيو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يوليو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أغسطس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>سبتمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أكتوبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>نوفمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>ديسمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

الUnmarshaller: ملخص عن بيانات الطقس في محطة بحوث المركز للعام 2006

<table>
<thead>
<tr>
<th>الشهر</th>
<th>درجات الحرارة (درجة مئوية)</th>
<th>البحارة الشمسي</th>
<th>التلخير (م)</th>
</tr>
</thead>
<tbody>
<tr>
<td>يناير</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>فبراير</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مارس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أبريل</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>مايو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يونيو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>يوليو</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أغسطس</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>سبتمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>أكتوبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>نوفمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
<tr>
<td>ديسمبر</td>
<td>0.0</td>
<td>10.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>
الملفح 3: الموظفون (ديسمبر 2006)

<table>
<thead>
<tr>
<th>مكتب المدير العام</th>
<th>الأردن</th>
<th>الدكتور شوقى البرغوثي</th>
</tr>
</thead>
<tbody>
<tr>
<td>المدرب العام</td>
<td>الإمارات</td>
<td>السيد إبراهيم بن ظاهر</td>
</tr>
<tr>
<td></td>
<td>سوريا</td>
<td>السيد أبو إسماعيل</td>
</tr>
<tr>
<td></td>
<td>العراق</td>
<td>السيد محمد علاء الدين</td>
</tr>
<tr>
<td></td>
<td>الهند</td>
<td>السيد عمر عبد السلام</td>
</tr>
<tr>
<td></td>
<td>العراق</td>
<td>السيد عبد المشتاق جيدات كولين</td>
</tr>
<tr>
<td>البرامج الثقافية</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مدرب البرنامج الفني</td>
<td>أستراليا</td>
<td>السيد إريك ماكفارلا</td>
</tr>
<tr>
<td></td>
<td>مصر</td>
<td>السيد ماهر عبد الفتاح</td>
</tr>
<tr>
<td></td>
<td>باكستان</td>
<td>السيد عبد القادر عبد الرحمن</td>
</tr>
<tr>
<td></td>
<td>العراق</td>
<td>السيد محمد منذر</td>
</tr>
<tr>
<td></td>
<td>الأردن</td>
<td>السيد غليام شاهير</td>
</tr>
<tr>
<td></td>
<td>سوريا</td>
<td>السيد فايز جواد الجباري</td>
</tr>
<tr>
<td></td>
<td>الغرب</td>
<td>السيد عبد الناصر داين جبس</td>
</tr>
<tr>
<td></td>
<td>جنوب أفريقيا</td>
<td>السيد خالد الرحمن</td>
</tr>
<tr>
<td></td>
<td>باكستان</td>
<td>السيد رشيد محسن</td>
</tr>
<tr>
<td></td>
<td>العراق</td>
<td>السيد عبد الله إمام خلال</td>
</tr>
<tr>
<td></td>
<td>باكستان</td>
<td>السيد سالم شريف</td>
</tr>
<tr>
<td></td>
<td>الهند</td>
<td>السيد محمد شاه</td>
</tr>
<tr>
<td></td>
<td>باكستان</td>
<td>السيد حسن الدين</td>
</tr>
<tr>
<td>مشرف أنظمة معلوماتية</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مشرف الموارد</td>
<td>لبنان</td>
<td>السيد عمرو النجمي</td>
</tr>
<tr>
<td></td>
<td>السعودية</td>
<td>السيد محمد الملا</td>
</tr>
<tr>
<td></td>
<td>الفلبين</td>
<td>السيد عبد الحليم غودل</td>
</tr>
<tr>
<td></td>
<td>الأردن</td>
<td>السيد ماهر عبد السلام</td>
</tr>
<tr>
<td></td>
<td>سوريا</td>
<td>السيد عدنان الشمالي</td>
</tr>
<tr>
<td>مساعد مهندس إداري العلاقات الحكومية</td>
<td></td>
<td></td>
</tr>
<tr>
<td>موظفة إستقبال</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الملحق 4: البيانات المالية للمركز

<table>
<thead>
<tr>
<th>الدخل</th>
<th>الدخل غير المقيدة</th>
<th>المساهمات في الدورات التدريبية والبحوث</th>
<th>المساهمات من المشاريع الخارجية</th>
<th>دخل أخرى</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3,591,142</td>
<td>3,419,568</td>
<td>53,776</td>
<td>44,895</td>
</tr>
<tr>
<td>2006</td>
<td>3,448,788</td>
<td>677,480</td>
<td>2,672</td>
<td>8,485</td>
</tr>
</tbody>
</table>

إجمالي الدخل

<table>
<thead>
<tr>
<th>المصروف</th>
<th>الرواتب المؤقتين</th>
<th>مزايا الموظفين</th>
<th>نفقات مجلس الإدارة</th>
<th>أموال وخدمات</th>
<th>أقساط إداراتية</th>
<th>رحلات العمل</th>
<th>منافع عامة</th>
<th>صيانة</th>
<th>استهلاك</th>
<th>تكاليف تجهيز الرى</th>
<th>مصاريف الدورات التدريبية والبحوث</th>
<th>مصاريف المشاريع الخارجية</th>
<th>مصاريف المراجع المقددة</th>
<th>إجمالي المصروف</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3,482,620</td>
<td>1,750,331</td>
<td>934,805</td>
<td>24,711</td>
<td>144,884</td>
<td>76,877</td>
<td>108,550</td>
<td>94,999</td>
<td>9,846</td>
<td>117,504</td>
<td>4,484,869</td>
<td>48,736</td>
<td>117,538</td>
<td>2,550,574</td>
</tr>
<tr>
<td>2006</td>
<td>4,124,040</td>
<td>1,750,331</td>
<td>934,805</td>
<td>24,711</td>
<td>144,884</td>
<td>76,877</td>
<td>108,550</td>
<td>94,999</td>
<td>9,846</td>
<td>117,504</td>
<td>4,484,869</td>
<td>48,736</td>
<td>117,538</td>
<td>2,550,574</td>
</tr>
</tbody>
</table>

إجمالي المصروف

<table>
<thead>
<tr>
<th>الأصول</th>
<th>المصدر والبنوك</th>
<th>حسابات مصرفية من الموظفين</th>
<th>مصرف مقدمة</th>
<th>المجموع الاحتياطي</th>
<th>الأصول الثابتة</th>
<th>المباني والمعدات</th>
<th>إجمالي الأصول</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>6,380,570</td>
<td>7,473,380</td>
<td>1,576,373</td>
<td>8,633,763</td>
<td>8,995,569</td>
<td>6,380,570</td>
<td>8,995,569</td>
</tr>
<tr>
<td>2006</td>
<td>1,613,744</td>
<td>1,519,241</td>
<td>2,873,745</td>
<td>7,876,789</td>
<td>8,415,276</td>
<td>1,613,744</td>
<td>8,415,276</td>
</tr>
</tbody>
</table>

إجمالي الأصول

<table>
<thead>
<tr>
<th>الالتزامات</th>
<th>دين دائمة</th>
<th>مصرف مصرفية القروض والالتزامات إدارية أخرى</th>
<th>إجمالي الالتزامات الجارية</th>
<th>مخصصات نهاية القدرة</th>
<th>الالتزامات طويلة الأمد</th>
<th>إجمالي الالتزامات</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>57,876</td>
<td>159,291</td>
<td>26,976</td>
<td>7,291</td>
<td>58,945</td>
<td>57,876</td>
</tr>
<tr>
<td>2006</td>
<td>79,760</td>
<td>159,291</td>
<td>26,976</td>
<td>7,291</td>
<td>58,945</td>
<td>79,760</td>
</tr>
</tbody>
</table>

إجمالي الالتزامات

<table>
<thead>
<tr>
<th>رأس المال المستثمر في المباني والمعدات</th>
<th>رأس المال</th>
<th>المساهمات المقددة مؤقتا</th>
<th>إجمالي رأس المال والمساهمات المقددة</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3,784,388</td>
<td>79,943</td>
<td>3,784,388</td>
</tr>
<tr>
<td>2006</td>
<td>3,784,388</td>
<td>79,943</td>
<td>3,784,388</td>
</tr>
</tbody>
</table>

إجمالي الالتزامات ورأس المال
أهم الجهات المانحة للمركز

البنك الإسلامي للتنمية

تأسس البنك الإسلامي للتنمية في العام 1975، وهو مؤسسة مالية دولة تهدف إلى دعم التنمية الاقتصادية والتنمية الاجتماعية لشعوب الدول الأعضاء والمجتمعات الإسلامية في الدول غير الأعضاء، مجتمعة أو منفردة، وفقا لمبادئ الشريعة الإسلامية.

الصندوق العربي للإيماศักดิ์\n
الاقتصادي والاجتماعي

الصندوق العربي للايماه، الاقتصادي والاجتماعي هو منظمة مالية إقليمية مستقلة لدعم الدول المتدينة إلى جامعة الدول العربية. يهدف منصة الدعم إلى دعم التنمية الاقتصادية والاجتماعية للدول العربية من خلال تمكين مشاريع التنمية المشتركة الشاملة، وتشجيع استمرار القطاع الخاص والعام في هذه المشاريع، وتقديم المساعدة الفنية للتنمية الاقتصادية والاجتماعية في الدول العربية.

الصندوق الأوليكي للتنمية الدولية

صندوق الأوليكي للتنمية الدولية هو مؤسسة مالية للتنمية الدولية متعددة الأطراف تأسست في العام 1976 ويضم الدول الأعضاء بمنظمة الدعم المصرفية للنفط (الأوليكي). يهدف الصندوق إلى تعزيز التعاون بين الدول الأعضاء بمنظمة الأوليكي وغيرها من الدول النامية المعبر عنها بالتعاون بين دول الجنوب-الجنوب، وخاصة الدول الأكثر نقصًا ذات الدخل المنخفض في سعيها لتحقيق التقدم الاقتصادي والاجتماعي.

الصندوق الدولي للتنمية الزراعية

الصندوق الدولي للتنمية الزراعية هو مؤسسة مالية دولية مختصة بالتنمية الزراعية تابعة للأمم المتحدة تأسست في العام 1977. تتمثل مهمة الصندوق الرئيسية في مساعدة سكان الريف على التغلب على الفقر.

وزارة البيئة والثيم بدولة الإمارات العربية المتحدة

تهدف وزارة البيئة والثيم إلى تحقيق التنمية البيئية المستدامة للأجيال الحالية والمستقبلية في دولة الإمارات العربية المتحدة.

هيئة البيئة-أبو ظبي

هيئة البيئة-أبو ظبي هي هيئة حكومية مستقلة تم إنشاؤها في العام 1996 بهدف حماية البيئة والحفاظ عليها لتحقيق التنمية المستدامة لإمارة أبو ظبي عاصمة دولة الإمارات العربية المتحدة.
المؤسسة الدولية للزراعة المالحة

المكتب دول وسط آسيا

المكتب أبوظبي

العنوان: دولة الإمارات العربية المتحدة

العنوان: هيئة: 71718001200 012007777777777

fax: 71718001200 012007777777777

بريد الكتروني: i.bin-taher@biosaline.org.ae

www.biosaline.org