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Abstract
Phytohormone-like plant growth regulators are becoming hallmarks in plant stress biology since they can offer incredible 
benefits to plants, such as increased crop output, improved growth features and stress tolerance. Among them polyamines 
(PAs) such as putrescine (Put), spermidine (Spd), and spermine (Spm), are recognized as important bio-stimulants that can 
boost plant growth, productivity, and stress tolerance, whether provided exogenously or synthesized endogenously by geneti-
cally engineered plants. However, the precise mechanism by which they regulate plant development and stress responses and 
their interactions with other signaling molecules remains unknown. Hence, unravelling the molecular complexity of PAs 
signaling in plants can help us to improve crop stress resistance and yield. This review focuses on the distribution, biosyn-
thesis, and role of PAs in plant growth and development, abiotic stress tolerance, and the involvement of a possible novel 
interlinked signaling cascade between them. Further, we focused on our current understanding and knowledge gaps of how 
PAs interact with other signaling molecules like hormones and nitric oxide (NO) to regulate plant growth and stress tolerance 
in a coordinated manner. We also provide an overview of PA signaling in plants, focusing on calcium  (Ca2+) and reactive 
oxygen species (ROS) under abiotic stress, and some key insights into omics and nanotechnology approach for future research.

Keywords Abiotic stressors · Hormones · Nitric oxide · Omics · Nanotechnology · Polyamines

Introduction

Plants experience continuously changing environmental 
conditions and various stresses throughout their life cycle. 
Environmental stresses negatively affect crop growth and 
development, which reduces their  productivity (Ali et al. 
2018a). The continuously increasing global population poses 
a major challenge to achieving agricultural productivity, and 

the situation is further worsened by the reduction in arable 
land due to abiotic stresses (Verma 2016). Abiotic stresses 
such as temperature, drought, and salt are the primary causes 
behind the decrease in the yield of most crops by > 50% 
worldwide (Rodríguez et al. 2006). In the current climate 
change scenario with global warming, abiotic stresses are 
becoming frequent and more severe (Bano et al. 2020). 
Unfortunately, climate change has greatly hampered the pro-
ductivity of important staple crops, including rice, wheat, 
and maize, presenting considerable challenges in many 
countries (Syed et al. 2022). It is predicted that developing 
and underdeveloped countries may experience greater nega-
tive effects due to climate change and a lack of adaptation 
capacity (Farooq et al. 2022). Therefore, it is essential to fill 
the knowledge gaps between climate change and food secu-
rity by implementing mitigation and adaptation measures for 
a climate-smart food production system that ensures food 
security (Farooq et al. 2022). In addition, the development 
of climate-smart, multiple stress-tolerant, and high-yielding 
crops is crucial for the economy and sustainable agriculture.
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In response to stress, plants upregulate various genes 
involved in synthesis of biological molecules such as sec-
ondary metabolites, phytohormones, osmolytes, and PAs, 
which can mitigate the effects of stress and maintain cellu-
lar homeostasis (Tiburcio et al. 2014; Zhu, 2016; Ali et al. 
2017). These molecules can act independently or interact 
with each other to alleviate stress responses. PAs are one 
of the oldest known substances in biochemistry (Galston 
1991). The first PA identified was Spm as phosphate crys-
tals in aging human spermatozoa in ~ 1677 by Antonie van 
Leeuwenhoek (Leuwenhoek 1677). About 200 years later, 
in 1885, Put and cadaverine (Cad) were identified from 
putrefying cadavers by Ludwig Brieger (Brieger 1885). In 
the 1920s, Harold Ward Dudley and his colleagues reported 
the chemical composition and synthesis of Put, Spm, and 
Spd (Dudley et al. 1926, 1927). PAs are aliphatic amines, 
or nitrogen-containing low molecular weight compounds 
present ubiquitously in all living organisms (Kaur-Sawhney 
et al. 2003; Vuosku et al. 2018). The diamine-Put, triamine-
Spd, and tetra-amine-Spm are the major PAs produced in 
plants and animals. Plants also synthesize less abundant PAs 
such as thermospermine (Tspm, another tetra-amine), Cad, 
1,3-diaminopropane, homoSpd, norSpd, homoSpm, norSpm, 
aminopropyl homoSpd, and methyl-Spd (Martin-Tanguy 
2001). Tspm has been detected in archaea, diatoms, and 
plants but not in animals or bacteria (Michael 2016). The PA 
biosynthetic pathways have been well established, credit to 
the availability of mutant eukaryotes and prokaryotes, which 

lack functional genes involved in PA biosynthesis (Tabor and 
Tabor 1984). In plants, PAs occur as free aliphatic PAs or 
as conjugates bound to phenolic compounds and biological 
macromolecules like deoxyribonucleic acid (DNA), ribonu-
cleic acid (RNA), and proteins due to their cationic nature 
(Gholami et al., 2013). Plant PA content varies in different 
species, organs, and developmental stages (Tiburcio et al. 
2014). PAs are involved in a wide range of physiological 
processes such as plant growth and development, includ-
ing organogenesis, floral initiation, embryogenesis, fruit 
development and maturation, leaf senescence, and biotic 
and abiotic stress responses (Fig. 1) (Galston and Sawhney 
1990; Liu et al. 2016a; Ebeed et al. 2017; Zhang et al. 2017; 
Mattoo and Sobieszczuk-Nowicka 2018; Pál et al. 2019). 
The content of PAs increases multiple folds in response to 
various abiotic stresses and nutrient deficient conditions 
(Alcázar et al. 2006a, b; Smith and Richards 1962; Yoshi-
kawa et al. 2007; Gill and Tuteja, 2010; Minocha et al. 2014; 
Pal et al. 2015; Takahashi et al. 2017; Chen et al. 2019). 
PAs play a key role in stabilizing membranes, scavenging 
free radicals, DNA replication, transcription, and translation, 
affecting the activity of enzymes like RNase, proteases, and 
others, and interacting with phytohormones, phytochrome, 
and ethylene (ET) biosynthesis (Slocum et al. 1984; Galston 
and Sawhney 1990; Alcázar et al. 2010; Qi et al. 2010; 
Childs et al. 2017). This review provides a comprehensive 
and critical evaluation/metanalysis of the literature on the 
role of PAs in plant growth development and stress resilience 

Fig. 1  A general illustration 
highlighting the role of PAs in 
different physiological pro-
cesses a) growth and develop-
ment, b) abiotic stress response, 
c) defense response, and d) 
aging in plants
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(Fig. 2). This article discusses the distribution, biosynthesis, 
and function of PAs in plants, emphasizing their involvement 
in improving growth and abiotic stress tolerance. In addition, 
we also highlight the crosstalk of PAs with other signaling 
molecules like NO and hormones. We also emphasize the 
role of multi-omics in unraveling the molecular complexity 
of PA signaling in plants. Finally, we highlight the role of 
nanoparticles in increasing PA delivery and efficacy for crop 
improvement. 

Distribution of Polyamines in Plants

PAs are synthesized ubiquitously in prokaryotes and eukary-
otes, including simpler plant RNA viruses, phytoplanktons, 
and complex plants and animals (Liu et al. 2016a). In higher 
plants, PAs are predominantly present in their free form. 
The commonly produced PAs in plants are Put, Spd, Spm, 
Tspm, and Cad, while the other PAs are only found in a few 
plant species or under certain conditions (Martin-Tanguy 
2001; Sobieszczuk-Nowicka, 2017; Takahashi et al. 2017). 
PAs show plant tissue-, organ-, and stage-specific distribu-
tion (Fig. 3). For example, the total content of major PAs 

Fig. 2  Graph showing an increase in the number of published papers on PAs in the past decade (2012–2022). The graph also shows the maxi-
mum number of systemic reviews on PAs modulating abiotic stress tolerance in plant systems

Fig. 3  Distribution and stor-
age of PAs in different organs 
in plants such as vegetative 
(leaf, stem, root), reproduc-
tive (flower, seed, fruit, tuber) 
organs and other organelle 
compartments
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(Put and Spm) in tobacco plants was higher in young leaves 
and apical meristems than in old/mature leaves, while Spd 
content showed a contrasting pattern. The higher PAs (Spd 
and Spm) are mainly synthesized in aerial plant organs like 
shoot apical meristems, while Put is synthesized in hypo-
geous (underground) plant organs. Among the major PAs, 
Spm and Spd are more uniformly distributed across the 
whole plant than Put (Paschalidis and Roubelakis-Angelakis 
2005). The PAs show great variation in their accumulation 
within the cells. In carrot cells, Put was found mainly in the 
cytoplasm, while Spm was in the cell wall (Cai et al. 2006). 
The distribution pattern of PAs in plants correlates with 
their functional requirement. In general, it was observed 
that more vigorous plant growth and efficient metabolism 
are associated with greater PA biosynthesis and higher PA 
contents (Paschalidis and Roubelakis-Angelakis 2005; Cai 
et al. 2006).

Biosynthesis of Polyamines and Its 
Regulatory Mechanisms

PA biosynthesis in plants has been studied in detail and 
discussed in many reviews (Slocum et al. 1984; Evans and 
Malmberg 1989; Martin-Tanguy 2001). In plants, biosyn-
thesis of PAs occurs via three different routes, all start-
ing with arginine (Arg). The first and the main route of 
PA biosynthesis in plants (Hao et al. 2005) involves the 
conversion of Arg into intermediate agmatine (Agm) by 

arginine decarboxylase (ADC) (Docimo et al. 2012). Then, 
Agm loses its -NH3 group to form N-carbamoyl putrescine 
(NCPA), which is hydrolyzed by N-carbamoyl putrescine 
amidohydrolase (NCPAH) to form Put, carbon dioxide 
 (CO2), and ammonia  (NH3). The second route of PA bio-
synthesis in plants involves hydrolysis of Arg by arginase to 
form ornithine (Orn), which is then decarboxylated by orni-
thine decarboxylase (ODC) to produce diamine-Put and  CO2 
(Pegg 2016). The absence of the ODC gene in Arabidopsis 
and other members of the Brassicaceae indicated that PA 
synthesis through the ornithine pathway is not essential for 
normal growth (Hanfrey et al. 2001). In the third route, Arg 
is first deiminated to citrulline (Cit) by arginine deiminase. 
Later, the Cit is decarboxylated by citrulline decarboxylase 
(CDC) to form Put (Hanfrey et al. 2001; Pegg, 2016). Put 
is further converted into Spd and then to Spm and Tspm 
by successive addition of an aminopropyl group, and these 
aminopropyl transfer reactions are catalyzed by Spd-syn-
thase (SPDS), Spm-synthase (SPMS), and Tspm-synthase 
(TSPMS), respectively (Fig. 4). The aminopropyl groups are 
derived from methionine in a separate enzymatic process. 
First, methionine is converted into S-adenosylmethionine 
(SAM) by methionine adenosyltransferase (MAT), and then 
SAM is decarboxylated by SAM decarboxylase (SAMDC). 
The resulting decarboxylated SAM (dSAM) acts as an ami-
nopropyl donor for PA biosynthesis. SAM is a common pre-
cursor for both PAs and ET.

An alternative Spd biosynthetic pathway was identified in 
grass pea (Lathyrus sativus), which involves the conversion 

Fig. 4  Biosynthesis pathway of major PAs in plants. NO, Nitric 
oxide; ODC, ornithine decarboxylase; DFMO, difluoromethylorni-
thine; CDC, citrulline decarboxylase; NOS, nitric oxide synthase; 
ADC, arginine decarboxylase; DFMA, difluoromethylarginine; AIH, 
agmatine iminohydrolase; N-carbamoylputreseine amidohydrolase; 
CHA, clohexylamine, the inhibitor of SPDS; CSPDC, carboxyn-
orspermidine/carboxyspermidine decarboxylase; SPMS, spermine 

synthase; SPDS, spermidine synthase; TSPMS, thermospermine 
synthase; SAMDC, S-adenosylmethionine decarboxylase; SAMS, 
S-adenosylmethionine synthase; ACS, 1-aminocyclopropane-1-car-
boxylate synthase; ACO, 1-aminocyclopropane-1-carboxylate oxi-
dase; MGBG, Methylglyoxal-bis (guanylhydrazone), the inhibitor of 
SAMDC; dSAM, decarboxylated SAM; MTA, 5′-methyl-thioadeno-
sine; NCPAH, N-carbamoylputerscine amino hydrolase
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of aspartic acid or homoserine into aspartic semialdehyde, 
which then combines with Put to form a Schiff’s base. The 
Schiff’s base is then reduced to Carboxy-Spd, which is later 
decarboxylated to Spd (Fig. 4). This pathway is an important 
alternative for Spd biosynthesis when SAM (Propylamine 
donor) is limited (Srivenugopal and Adiga 1980). Decar-
boxylases, including ADC, ODC, CDC, and SAMDC, are 
important enzymes involved in PA biosynthesis and are key 
regulators of PA content in plants. SAMDC regulates both 
PA and ET biosynthetic pathways (Fig. 4). Many studies 
were conducted using inhibitors of key enzymes involved 
in PA biosynthesis to understand the role of PAs in plant 
growth and development. The most commonly used enzyme 
inhibitors of PA synthesis include Difluoromethylornithine 
(DFMO) and Difluoromethylarginine (DFMA), which are 
irreversible inhibitors of ODC and ADC, respectively (Bey 
et al. 1987; Bitonti et al. 1987). Methylglyoxal-bis guanyl 
hydrazone (MGBG) competitively inhibits SAMDC (Wil-
liams-Ashman and Schenone 1972), and Cyclohexylamine 
(CHA) is a competitive inhibitor of spermidine synthase 
(Hibasami et al. 1980).

Polyamine Catabolism

Oxidation and back conversion are the only mechanisms 
identified for the degradation of PA in plants. Higher PAs 
such as Spd, Spm, and Tspm content in plants is regulated 
by specific oxidases, including diamine oxidase (DAO) and 
polyamine oxidase (PAO) (Smith and Barker 1988). The 
PAOs are mainly involved in the oxidation of major PAs like 
Spd, Spm, and Tspm, while DAOs catalyze the oxidation of 
primary PAs like Put. For example, Put is oxidized to form 
4-aminobutanal,  NH3, and hydrogen peroxide  (H2O2). This 
reaction is catalyzed by DAO, which requires copper  (Cu+) 
and pyridoxal phosphate as its cofactors. The 4-aminobutal 
is then spontaneously cyclized to form pyrroline (Pyrr). 

Then, pyrroline dehydrogenase (Pyrr-DH) converts Pyrr into 
γ-aminobutyric acid (GABA), which is further converted 
into succinate that enters the Krebs cycle (Fig. 5). A high 
amount of DAOs was observed in dicots, but very few spe-
cies were reported to contain DAO encoding genes. PAOs 
belong to the flavoprotein superfamily and non-covalently 
bind to flavin adenine dinucleotide (FAD). Monocots are 
found to have high levels of PAOs. The oxidation of Spm by 
PAO results in the production of 1,3-diaminopropane,  H2O2, 
and 1-(3-aminopropyl)-4-aminobutanal, which later sponta-
neously cyclizes to form 1,5-diazobicyclo [4.3.0.] nonane. 
The oxidation of Spd by PAO produces 1,3-diaminopropane, 
 H2O2, and 4-aminobutanal, which spontaneously cyclizes to 
yield Pyrr (Lennarz and Lane 2013). The oxidation of PAs 
by PAOs does not produce ammonia. It was also reported 
that some plant PAOs could reverse catalyze PA biosyn-
thesis. It was observed that exogenously applied Spd was 
converted into Put in Arabidopsis and sunflower (Helianthus 
tuberosus). In Arabidopsis, AtPAO1 and AtPAO4 can convert 
Spm to Spd, while AtPAO2 and AtPAO3 can transform Spm 
to Spd and then to Put. Similarly, in the false brome (Brachy-
podium distachyon), BdPAO2 converts Spm or Tspm to Spd 
and then to Put, but BdPAO3 preferentially catalyzes the 
conversion of Spm to Spd. PAs can bind to nucleic acids and 
proteins and regulate replication, transcription, translation, 
and various physiological processes in plants. Therefore, it is 
necessary to understand the role and functional mechanism 
of PAs in plant growth and development under biotic and 
abiotic stress conditions.

Role of Polyamines in Plant Growth 
and Development

Polyamines are involved in plant growth and development, 
including seed germination, organogenesis, tissue lignifi-
cation, abscission, senescence, embryogenesis, flowering, 

Fig. 5  Oxidation mechanism of 
major PAs in plants. PAO, poly-
amine oxidase; Pyrr, pyrroline; 
GABA, γ-aminobutyric acid; 
Pyrr-DH, pyrroline dehydroge-
nase;  H2O2: hydrogen perox-
ide;  O2, oxygen;  H2O, water; 
 NH3, ammonia; DAO, diamine 
oxidase
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pollination, fruit development, and ripening (Fig. 1). Trans-
genic methods, exogenous PAs, and PA synthetic inhibi-
tors have been used to validate the role of PAs in plants. In 
this review, we summarize recent research on the effects of 
PAs on plants and provide a foundation for future studies 
on the mechanisms of action of PAs in plant growth and 
development.

Polyamines Enhance Seed Germination 
and Vegetative Growth

Seed germination is one of the most complex physiologi-
cal processes in the plant life cycle. According to previ-
ous reports, the PA content increases in the growing tis-
sue during the early stages of germination. It was reported 
that considerable amounts of Cad and Put accumulated in 
the hypocotyl and radicle during soybean seed germination 
and diminished in the cotyledons. Spd was observed to be 
synthesized and accumulated in the embryonic axis, while 
Spm was completely undetectable in the germinating seeds 
(Lin 1984). Similarly, the growing embryo of maize (Zea 
mays) showed an increase in Put content while Spd and 
Spm contents were decreased (Sepúlveda and Sánchez de 
Jiménez 1988). PAs play a significant role in cell division 
and elongation; they are necessary for the plant's vegetative 
growth, including leaf area, fresh and dry weight of shoots 
and roots, and flower number. In strawberry (Fragaria 
ananassa), the application of Spd increased the chlorophyll 
content, while Put had no effect or decreased the chlorophyll 
content (Movahed et al. 2012). The application of Spd and 
Put negatively affected the number of runners but positively 
increased specific leaf weight, fresh and dry weight of shoot 
and root, truss number, flower per truss, and yield per plant 
(Movahed et al. 2012). Similarly, the foliar application of 
Put and Spd showed significant improvement in the vegeta-
tive characters of gerbera (Gerbera jamesonii) (Saeed et al. 
2019). Transgenic overexpression of GhSAMDC in tobacco 
(Nicotiana tabacum) plants resulted in rapid vegetative 

growth, including a larger leaf area and greater plant height 
than wild-type plants (Zhu et al. 2020). Some examples of 
the exogenous application of PAs and transgenic expression 
of PA biosynthetic genes are provided in Tables 1 and 2, 
respectively.

Role of Polyamines in Flower Development, 
Fertilization, Self‑Incompatibility, and Embryo 
Development

The flower bud differentiation is a complex morphogenetic 
process regulated by various factors, including photoper-
iod, vernalization, nutrition, and water availability, and is 
achieved by interaction and coordination of phytohormones 
and PAs (Xu 2015). In mums (Chrysanthemum indicum), a 
higher content of PAs promoted floral bud differentiation 
(Guo et al. 2015). The exogenous application of 1.0 mM 
Spm accelerated the vegetative growth and promoted early 
flowering in tobacco (Zhu et al. 2020). Further, the trans-
genic overexpression of GhSAMDC caused early flowering 
by five days compared with flowering time of wild-type 
plants (Zhu et al. 2020). Similarly, foliar application of 
100 mg  L−1 Spd causes early flowering, and 100 mg  L−1 Put 
increases the number and size of flowers in gerbera (Saeed 
et al. 2019). In strawberries, the exogenous application of 
Put and Spd increased the truss number and number of flow-
ers per truss (Movahed et al. 2012).

The entire process of microsporogenesis and fertiliza-
tion is well regulated by PA homeostasis. In N. tabacum, 
the transcripts of ADC and ODC mainly involved in the 
biosynthesis of Put were found in abundance at the uninu-
cleate and the bicellular microspore stage, and transcripts 
for Put oxidation were increased (Bokvaj et al. 2015). The 
accumulation of conjugated PAs from the tapetum to the cell 
wall of the pollen before dehiscence is necessary for pollen 
structure, pollen tube growth, and fertilization in Arabidop-
sis (Fellenberg et al. 2009). Further, the oxidation of PAs 
plays a crucial role in pollen development; the  H2O2 released 

Table 1  Studies showing the role of PAs in different plant systems

Plant PA (concentration) Outcome References

Tobacco (N. tabacum) Put (0.01 and 0.1 mM) Increased germination and seedling vigor Xu et al. (2011)
Gerbera daisy (G. jamesonii) Spd and Put (100 mg  L−1) Increased number and size of the flower Saeed et al. (2019)
Thyme (Thymus vulgaris L) Put (20 mg  L−1) Drought tolerance Mohammadi et al. (2018)
Wheat (Triticum aestivum L) Spd or Spm (1 mM) Increased grain filling and grain weight Yamaguchi et al. (2007)

Spm and Spd (0.5 mM) Enhanced waterlogging tolerance Du et al. (2018)
Spm (0.5 mM) Tolerance to Cd and Cu toxicity Groppa et al. (2007)

Rice (Oryza sativa) Pur (0.1 mM) Salinity tolerance Lutts et al. (1996)
Soybean (Glycine max) Spd, Spm, and Put (100, 150, 

150 mg  L−1, respectively)
Salinity tolerance Wang and Yin (2014)

Onion (Allium cepa L) Put (20–100 mg  L−1) Increased leaf growth and bulb yield Yamaguchi et al. (2007)
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during oxidation of Spd and Spm is involved in cell wall 
stiffening in pollen development (Fincato et al. 2012). Simi-
larly, RNAi-mediated downregulation of tapetal SAMDC 
in tomato (S. lycopersicum) resulted in partial or complete 
sterility in transgenic plants (Sinha and Rajam 2013). Com-
petitive inhibition of enzymes involved in PA biosynthesis 
resulted in the formation of abnormal pollen grains with 
reduced viability in many plants (Falasca et al. 2010). Fur-
ther, a germination medium supplemented with exogenous 
PAs resulted in the restoration of germination and fertili-
zation of aged pollen grains (Song and Tachibana 2007). 
High PA biosynthesis enzyme activities were observed dur-
ing the early stages of pollen germination in many plants, 
and competitive inhibition of PA biosynthetic enzymes by 
bis (guanylhydrazones) severely affected pollen germination 
(Antognoni and Bagni 2008).

When pollen grains land on the stigma, they must 
undergo a non-self- and self-recognition process, also known 
as self-incompatibility (SI) response. It is the most important 
evolutionary process in angiosperms to prevent inbreeding 
(Takayama and Isogai 2005). There are two different types 
of SI systems recognized in plants. The stigma of the female 
plant either consists of a cell membrane receptor as in corn 
poppy (Papaver rhoeas) or releases molecules such as a 
stigma/ style ribonuclease (S-RNase). S-RNase enters the 
incoming pollen grains and gets degraded in the compatible 
pollen grains, whereas in the incompatible pollen S-RNase 
causes degradation of the RNAs of the pollen (Dresselhaus 
and Franklin-Tong 2013). High concentrations of PAs like 
Put, Spd, and Spm inhibit the S-RNase activity in apples 
(Malus domestica) and potatoes (Solanum tuberosum) (Alt-
man 1982; Speranza et al. 1984).

PAs regulate embryogenesis in both angiosperms and 
gymnosperms (De Oliveira et al. 2017). Increased PA con-
tent is necessary for embryo development. The requirement 
for the type of PA varies with the embryo growth stage from 
the multicellular proembryo, globular, heart-shaped, and tor-
pedo stages to the cotyledon stage (Krasuska et al. 2014). 
Further, efficient somatic embryogenesis and formation of 
complete plantlets are closely regulated by endogenous phy-
tohormones, such as Indole acetic acid (IAA), cytokinins 
(Cyt), abscisic acid (ABA), and PAs. Many studies have 
shown that PAs play a key role in inducing cell division 
and promoting regeneration in plant tissue and cell cultures 
(Minocha and Minocha 1995; Yadav and Rajam 1997; Von-
dráková et al. 2015). In Korean ginseng (Panax ginseng) tis-
sue culture, the addition of Spd (1 mM) to the induction and 
regeneration medium resulted in a 5- and 4- fold increase in 
embryonic structures, respectively (Kevers et al. 2000). Sim-
ilarly, the application of appropriate combinations of Put, 
Spd, and Spm to the culture medium resulted in increased 
plantlet development or embryo germination rates in seed-
less grapevine (Vitis vinifera) (Jiao et al. 2018).

Role of Polyamines in Seed Maturity, Fruit Ripening, 
and Senescence

The role of PAs in fruit development and senescence has 
received much attention because of the probable metabolic 
relationship between PAs and ET via the propylamine group 
of SAM. In soybean (G. max), the Put content decreased 
to undetectable levels during seed growth and maturation, 
while Spm and Spd levels increased continuously (Lin et al. 
1984). In the past decade, many reviews have focused on 

Table 2  Transgenic studies showing the role of PAs in different plant systems

Plant Gene Source Outcome References

Rice (O. sativa) ADC (EC 4.1.1.19) Oats (Avena sativa) Salt tolerance Roy and Wu (2001)
Jimsonweed (Datura stra-

monium)
Drought tolerance Capell et al. (2004)

SAMDC (EC 4.1.1.50) Hybrid crop (Tritordeum) Salt tolerance Roy and Wu (2002)
Tobacco (N. tabacum) SAMDC (EC 4.1.1.50) Cotton (Gossipium hirsu-

tum)
Improved vegetative growth 

and early flowering
Zhu et al. (2020)

Human (Homo sapiens) Salinity, drought, and fungal 
wilts (caused by Verticil-
lium ahlia and Fusarium 
oxysporum) stress toler-
ance

Waie and Rajam (2003)

Tomato (Solanum lycoper-
sicum L)

SPDS (EC 2.1.5.16) Budding yeast (Saccharomy-
ces cerevisiae)

Delayed ripening of fruits 
and heat stress tolerance

Mehta et al. (2002); Cheng 
et al. (2009); Nambeesan 
et al. (2010)

SAMDC (EC 4.1.1.50)

ODC (EC 4.1.1.17) Mouse (Mus musculus) Enhanced fruit quality Pandey et al. (2015)
Arabidopsis (Arabidopsis 

thaliana)
SPDS (EC 2.1.5.16) Black seed squash (Cucur-

bita ficifolia)
Enhanced tolerance to chill-

ing, freezing, salinity, and 
drought

Kasukabe et al. (2004)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Journal of Plant Growth Regulation

1 3

the role of PAs in fruit development and ripening (Gao et al. 
2021). Among climacteric tomato fruits, PA levels vary 
between cultivars during fruit ripening. The Put, Spd, and 
Spm content decreased during fruit ripening in the toma-
toes, PikRed and Rutgers, whereas fruits from the cultivar 
Liberty ripened slowly and exhibited a prolonged shelf life, 
accumulating high quantities of Put during ripening (Dibble 
et al. 1988; Saftner and Baldi 1990). Similarly, in cherry 
tomato (S. lycopersicum var. cerasiforme), the fruits gradu-
ally accumulate Put during ripening while the Spd and Spm 
content decreases (Tsaniklidis et al. 2016). Transgenic over-
expression of the yeast SPDS gene in tomatoes results in 
high quantities of Spd in fruits, which causes delayed ripen-
ing and prolonged shelf life (Nambeesan et al. 2010). The 
Spd and Spm content decreased gradually while Put content 
increased during ripening of banana (Musa acuminata) and 
peach (Prunus persica) (Liu et al. 2006; Borges et al. 2019). 
In apples, Spd was reported to be the predominant form of 
PAs during fruit development and ripening (Zhang et al. 
2003). PAs also regulate the growth and ripening of non-
climacteric fruits. Even though the transcript abundance of 
ADC, SPDS, and SPMS are high in grapes, the PA content 
decreases during ripening due to oxidation of PAs, indicat-
ing the role of PA catabolism during grape berry ripening 
(Agudelo-Romero et al. 2013).

In contrast, PA oxidation negatively impacts fruit rip-
ening in strawberries. RNAi-mediated downregulation of 
FaPAO5 results in the accumulation of Spd and Spm and 
fruit ripening (Mo et al. 2020). Plant leaf senescence is the 
terminal step in the plant’s life cycle, involving a multi-
layer control, including hormonal cues, predominantly ET. 
Recently, many studies have been conducted on the role of 
PAs in leaf senescence. Exogenous applications of PAs were 
shown to delay senescence in oat (A. sativa), and petunia 
(Petunia × atkinsiana) leaves (Mizrahi et al. 1989). The 
excised oat leaves stored under dark conditions showed a 
decreased Spm content (Kaur-Sawhney et al. 1982). There 
was an increase of transcripts corresponding to PA catabo-
lism enzymes, DAOs and PAOs, in response to dark-induced 
senescence of barley leaves. Further, inhibition of PAOs 
decreased  H2O2 levels, indicating a connection between 
dark-induced senescence and PA catabolism (Ioannidis 
et al. 2014). Similarly, Arabidopsis PA back-conversion 
oxidase mutants, which cannot process the conversion of 
Spm to Spd ‘or’ Spd to Put, showed a delayed dark-induced 
senescence response (Sequera-Mutiozabal et al. 2016). Lee 
et al. (1997) found that Spm delayed the senescence of cut 
carnation flowers and reduced ET production by regulating 
the transcription and activities of ET biosynthesis enzymes 
ACC oxidase and ACC synthase in the petals (Lee et al. 
1997). The exogenous PAs' ability to prevent senescence 
may be linked to their ability to block ET production and 
membrane stability.

Further, some examples of the exogenous application of 
PAs and transgenic expression of PA biosynthetic genes for 
improving plant growth traits and stress resilience in differ-
ent crops are provided in Tables 1 and 2. PAs are important 
growth regulators whose mechanisms of action are distinct 
from those of plant hormones. Despite the availability of 
high-throughput technologies, the molecular processes by 
which PAs influence growth responses remain unknown. 
Further research is needed to better understand the PA pro-
duction and the metabolic pathways and molecular mech-
anisms regulated by PAs, which will lead to novel strate-
gies for increasing plant growth and survival in changing 
environments.

Harnessing the Potential of Polyamines 
in Abiotic Stress Tolerance

PAs modulate plant defense against various abiotic stresses 
and are essential for plant development and other physiologi-
cal processes (Choudhary et al. 2022; González-Hernández 
et al. 2022; Islam et al. 2022). PAs anti-stress properties are 
attributed to their acid-neutralizing and cell wall-stabilizing 
abilities and strong antioxidant activities. It has been discov-
ered that both endogenous synthesis and exogenous supply 
of PAs and genetic transformation of PA biosynthetic genes 
provide stress resilience against a wide range of abiotic 
stressors (Tables 1 and 2). In this review, we have discussed 
in depth the role of PAs against different abiotic stresses with 
multiple case studies.

Role of Polyamines in Mitigating Heat Stress 
in Plants

Temperature stress significantly impacts plant traits like 
photosynthesis and seed germination, as well as causes oxi-
dative stress, which can lead to reduced plant development 
and agricultural output (Hasanuzzaman et al. 2013; Raza 
et al. 2021). Temperature stress in plants can be classified 
into high-temperature (> 25 °C) and low-temperature stress; 
the latter is further classified into cold stress (0–15 °C) and 
freezing stress (< 0 °C), all resulting in considerable yield 
reduction in the majority of key crops (Raza et al. 2021). 
Climate change is causing more heat waves, wildfires, and 
desertification, severely threatening food security (Raza 
et al. 2022). PAs play a significant role in many plant func-
tions, and the physiological mechanism of thermo-tolerance 
varies among plant species. Hence, the pattern of changes 
in PA content in response to high-temperature stress differs 
among plant species. Under high-temperature stress, PAs 
can promote photosynthesis by increasing the antioxidant 
capacity and maintaining the osmotic balance of plants. In 
Chinese kale (Brassica alboglabra Bailey), 6 days of heat 
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stress induced the accumulation of PAs like Spd, Spm, and 
Put, but the increments were not maintained over longer 
stress periods (Yang and Yang 2002). It was reported that 
heat stress tolerance in alfalfa (Medicago sativa) was due 
to high endogenous Spd content and lower Spm and Put 
content in the leaves (Shao et al. 2015). Transcriptome 
analysis of pigeon pea (Cajanus cajan) and its wild rela-
tives under heat stress conditions showed upregulation of 
TSPMS (ACL5) and SAMDC genes, indicating the signifi-
cance of PAs in heat stress tolerance in pigeon pea (Ram-
akrishna et al. 2021). Similarly, PAs bind to phospholipids 
in the membrane during cold stress and prevent cell lysis 
(Li and He 2012). An increase in Put content along with 
chilling damage was observed in Bell pepper fruit (Capsi-
cum annuum L. cv. Lamuyo) and Zucchini fruits (Cucurbita 
pepo) stored at chilling temperature, while the Spd and Spm 
content remained low in both (Serrano et al. 1997, 1998). 
 CO2 pretreatment was shown to reduce chilling injury and 
Put content in zucchini fruits stored at chilling temperature 
(Serrano et al. 1998). Hence, it was proposed that accumu-
lation of Put caused the chilling damage, while an increase 
in Spm may be a defense response against low-temperature 
stress. Further, exogenous application of Spm resulted in 
high endogenous Spd and Spm and inhibited Put accumula-
tion and reduced chilling damage in Loquat fruits (Erio-
botrya japonica) (Zheng et al. 2000). Similarly, exogenous 
application of PAs increased cold tolerance in candy leaf 
(Stevia rebaudiana) plants (Moradi Peynevandi et al. 2018). 
In contrast, exogenous application of Put reduced the chill-
ing injury in banana fruits stored at 8 °C (Wang et al. 2003). 
Transgenic overexpression of the SPDS gene cDNA from 
black seed squash (C. ficifolia) in Arabidopsis resulted in 
increased SPDS activity and Spd content in leaves with 
enhanced tolerance to various abiotic stresses, including 
chilling, freezing, salinity, and drought (Kasukabe et al. 
2004).

Role of Polyamines in Drought and Waterlogging 
Stress Tolerance

Drought and waterlogging impact crop development and 
yield substantially, and due to global climate change, their 
frequency and severity have increased (Tyagi et al. 2022; 
Ali et al. 2022a). In 2050, for example, 50% of the world's 
areas will be water-scarce due to global warming (Gupta 
et al. 2020). Many studies have focused on the relationship 
between PAs and water stress in plants (drought and water-
logging) (Ebeed et al. 2017). PAs can maintain the osmotic 
balance of a cell during stress conditions by regulating ion 
and water transport through potassium channels and stomata, 
respectively (Liu et al. 2000). The exogenous application 
of Put (20 mg  L−1) to thyme (T. vulgaris L.) plants dur-
ing drought stress showed improved leaf water content, dry 

matter accumulation, reduced cell injury, and upregulated 
antioxidant enzyme activity (Mohammadi et al. 2018). Fruits 
of grafted tomato plants subjected to drought stress showed 
high endogenous PA content, which positively influenced 
the accumulation of osmoprotectants and ROS scavenging 
enzyme activities (Sánchez-Rodríguez et al. 2016). The 
exogenous application of Spm resulted in increased toler-
ance to salt and drought stress in Arabidopsis TSPMS/SPMS 
mutants (deficient in Tspm and Spm), while pretreatment 
with Put and Spd could not complement the hypersensitiv-
ity of the mutants to salt and drought stresses (Yamagu-
chi et al. 2007). Among the PAs, Spm is strongly related to 
drought stress tolerance in apple seedlings (Liu et al. 2010). 
In wheat (T. aestivum), both Spd and Spm alleviated the 
negative effects of drought stress and improved grain filling, 
while Put aggravated the negative impact of drought stress 
(Liu et al. 2016b). Similar results were observed in cherry 
tomato (Montesinos-Pereira et al. 2014). The heterologous 
expression of the coding sequence of the ADC gene from 
thorn apple (D. stramonium) resulted in a robust recovery 
from drought stress in transgenic rice plants despite them 
having an endogenous ADC gene (Capell et al. 2004). Trans-
genic rice (Oryza sativa) plants showed increased endog-
enous Put, Spd, and Spm content. Wheat (T. aestivum L.) 
seedling roots under waterlogging stress accumulated high 
levels of Spd and Spm. Pretreatments with exogenous Spd 
and Spm alleviated the waterlogging stress injury in wheat 
seedlings by increasing endogenous Spd and Spm content 
(Du et al. 2018). Further, the application of PA biosynthe-
sis enzyme inhibitor methylglyoxal-bis-guanylhydrazone 
(MGBG) decreased endogenous Spd and Spm content under 
waterlogging stress and aggravated the stress-induced injury 
of the seedlings (Du et al. 2018). In alfalfa (M. sativa), pre-
treatment with melatonin increased endogenous PAs (Put, 
Spd, and Spm) to alleviate waterlogging stress (Zhang et al. 
2019). Exogenous application of Put to welsh onion (Allium 
fistulosum) before waterlogging stress reduced the flooding-
induced oxidative damage by activating the antioxidant sys-
tem (Yiu et al. 2009).

Polyamines and Salt Stress Tolerance

Salt stress is the second most significant abiotic factor affect-
ing agricultural productivity globally (Raza et al. 2022). Salt 
stress affects membrane integrity and reduces photosynthetic 
efficiency and enzyme activity (Chen et al. 2019). Plants 
respond to unfavorable conditions like salt stress by modula-
tion of ion homeostasis, accumulating low molecular weight 
osmoprotectants such as glycine betaine, proline, and PAs, 
enhancing the antioxidant defense system and production 
of defense hormones (Raza et al. 2022). PAs play a key role 
in mitigating plant salinity stress by activating biochemical, 
physiological, and molecular defense systems (Rathinapriya 
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et al. 2020). Pretreatments of belladonna (Atropa bella-
donna) seeds with 0.1 nM Put alleviated the adverse effects 
of salt stress during germination and early seedling growth 
by inducing accumulation of secondary metabolites and 
endogenous Put (Ali 2000). A study observed that upregu-
lation of the AtADC2 gene in response to salt stress results in 
the accumulation of endogenous Put in Arabidopsis. Further, 
in Arabidopsis adc2-1 mutants, the Put levels were reduced 
to 25% under salt stress conditions, but the plants recovered 
from salt stress on application of exogenous Put (Urano et al. 
2004). Exogenous application of Put (0.1 mM) increased 
salinity tolerance in rice cultivars (Lutts et al. 1996). An 
increase in the endogenous Spm content was observed in 
the leaves of the sunflower plants treated with different con-
centrations (50, 100, 150 mM) of sodium chloride (NaCl) 
(Mutlu and Bozcuk 2005). The exogenous application of 
100 mg  L−1 Spd, 150 mg  L−1 Spm, and 150 mg  L−1 Put 
increased the growth rate of roots and shoots, ROS scaveng-
ing enzyme activity, and reduced the electrolyte leakage in 
soybean seedlings subjected to salt stress (Wang and Yin 
2014).

Role of Polyamines in Ameliorating Heavy Metal 
Toxicity in Plants

In the present era of industrialization, heavy metal (HM) 
contamination in the soil due to natural and anthropogenic 
activities is a global concern (Ali et al. 2022b). Some heavy 
metals, like copper (Cu), zinc (Zn), manganese (Mn), etc., 
are considered essential micronutrients for plant growth. 
Other heavy metals like mercury (Hg), lead (Pb), cadmium 
(Cd), chromium (Cr), arsenic (As), etc., are highly toxic for 
plant growth and development (Ali et al. 2021). HM toxic-
ity causes oxidative damage, which severely affects plant 
growth and productivity. The exogenous application of PAs 
to plants under HM stress can modulate antioxidative path-
ways to scavenge excessive ROS and prevent their bioac-
cumulation. In carnation (Dianthus caryophyllus L.) plants, 
endogenous free Put levels and total Put/(Spm + Spd) ratios 
increased while Spd and Spm content decreased in response 
to Cd toxicity (Serrano-Martínez and Casas 2011). The 
exogenous application of Spd alleviated the adverse effects 
of Cd toxicity in the frogbit (Hydrocharis dubia (Bl.)) plant 
by activating antioxidative pathways (Yang et al. 2013). 
Similar results were reported in other plant species such as 
sea lettuce (Ulva lactuca) (Kumar et al. 2010), Helianthus 
annuus (Groppa et al. 2008), T. aestivum (Groppa et al. 
2007), and rice (Roychoudhury et al. 2012). Cr is the sev-
enth most abundant metal and is highly toxic to plant growth 
and metabolism (Shanker et al. 2005). Quinoa (Chenopo-
dium quinoa) treated with (0.01–5 mM) chromium chlo-
ride  (CrCl3) showed higher levels of Put than those of Spd 
and Spm. All the PAs were increased with the duration of 

the stress treatment (Scoccianti et al. 2016). Similarly, PA 
homeostasis and Cr toxicity were studied in cultivated radish 
(Raphanus sativus), where Cr-treated plants showed a reduc-
tion in PA content compared with the control (Choudhary 
et al. 2010). Cu is an essential metal for many physiological 
processes but is toxic to plant growth and development at 
concentrations above the optimal levels (Fargašová 2004; 
Yruela 2009). In sunflower plants subjected to Cu toxicity, 
the Put and Spm increased with increase in ADC activity 
and decrease in ODC activity under all concentrations of 
Cu treatments. In contrast, Cu toxicity in wheat induced Put 
accumulation with high ODC activity (Groppa et al. 2003). 
The exogenous application of Spd enhanced the Cu stress 
tolerance in R. sativus plants (Choudhary et al. 2012).

Polyamines and Abiotic Stress Signaling: 
Missing Links Between Them

Many studies have found that using either exogenous PA 
application or genetic manipulation of endogenous PA lev-
els in transgenic plants improves abiotic stress tolerance 
(Bano et al. 2020; Takahashi 2020; González-Hernández 
et al. 2022). Furthermore, multiple studies have also indi-
cated that treating plants with a combination of PAs and hor-
mones improves abiotic stress resistance (Table 3). However, 
the precise molecular mechanism underlying PA-induced 
stress resistance remains unknown. It is unclear how PAs 
and hormones influence plant stress resilience at the molecu-
lar level. PAs are not only protective compounds, but also 
important components of a complex signaling system that 
aids stress tolerance. Abiotic stressors are concomitant with 
the increased accumulation of different signaling molecules 
like ROS, calcium  (Ca2+), nitric oxide (NO), hydrogen 
sulfide  (H2S), and hormones (Mohanta et al. 2018). These 
signaling players modulate an array of defense and growth 
responses in plants during abiotic stress, either individually 
or in combination. Many studies have revealed that PAs are 
also produced during abiotic stressors, suggesting that they 
may trigger a variety of signaling cascades in plants. For 
example, PAs have been shown to scavenge ROS, accumu-
late  H2O2 and NO during PA metabolism, activate plasma 
membrane  Ca2+-ATPase and alter  H+ pumping, amplify OH-
induced  K+ efflux, and interact with and remodel cation and 
anion conductance at the plasma membrane all of them will 
regulate various downstream signaling pathways (Pottosin 
et al. 2012). However, there are limited studies on the above 
traits modulated by PAs. Hence, more comprehensive stud-
ies at the molecular level are required. In plants,  H2O2 can 
mediate various processes, such as stomatal closure, directly 
due to its ability to influence ion channels and regulate the 
mitogen-activated protein kinase (MAPK) cascade associ-
ated with stress responses. However, how PAs trigger  H2O2 
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Table 3  Role of PAs and other hormones/ their crosstalk in regulating physiological, biochemical, and molecular changes during abiotic stress in 
various plant species

Treatment with Poly-
amines in combina-
tion with different 
hormones

Abiotic Stress Physiological and biochemical 
or molecular changes for stress 
tolerance

Plant species References

PA Hormone

Put ABA Cold Stress activates biosynthesis 
gene involved in Put (ADC1 
and ADC2) Put induce ABA 
biosynthesis (NCED3, RD29B, 
and RD22) Put positively 
regulates transcript expression 
of NCED3 in ABA-defective 
mutants

Arabidopsis (A. thaliana) Cuevas et al. (2008)

PAs JA MeJA reduce chilling injury 
on plant by increasing PAs 
(Reduced percent ion leakage 
in chilling tolerant plant)

Mango (Mangifera indica cv. 
Tommy Atkins)

González-Aguilar et al. (2000)

Put SA Stress activate SA accumulation
SA-treated plants represent high 

level of Put under stress

Maize (Z. mays) Szalai et al. (2016)

Put ABA Stress activates accumulation of 
Put and ABA (Low electrolyte 
leakage in chilling tolerant 
plant)

Rice (O. sativa L.) Lee et al. (1995)

Spm ABA, JA PDJ-/Spm-treated plants are 
chilling tolerant by ABA 
accumulation, low  IC50 value of 
 O2− radical scavenging activity, 
and increased ascorbic acid and 
polyphenol contents

Apple (Malus sylvestris (L.) 
Mill. Var. domestica (Borkh.) 
Mansf.)

Yoshikawa et al. (2007)

Spd, Spm ABA, JA MeJA alleviate chilling stress on 
plant by regulating endogenous 
ABA and PAs

Pumpkin (C. pepo L.) Wang and Buta (1994)

Put, Spm ABA Heat Stress activates PAs production 
and delayed ABA accumulation 
(It make plant firmness (HSIR))

Lemon (Citrus limon L. Burm, 
cv. Verna)

Valero et al. (1998)
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Table 3  (continued)

Treatment with Poly-
amines in combina-
tion with different 
hormones

Abiotic Stress Physiological and biochemical 
or molecular changes for stress 
tolerance

Plant species References

PA Hormone

Spd, Spm ET Salt/Drought Stress activates ET production 
and conversion of Put into Spd 
and Spm Reduced indexes 
of stomata aperture, mem-
brane lipid peroxidation, and 
electrolyte leakage (Increased 
tolerance to osmotic stress in 
overexpressed CsCDPK6 trans-
genic mutant)

Tobacco (Nicotiana benthami-
ana)

Zhu et al. (2021)

Put ABA ABA-/Put-treated plants are 
tolerant by regulating proline 
metabolism, lower stomatal 
conductance, and transpiration

Wheat (T. aestivum L. TC33) Pál et al. (2018)

Spm ABA Spm-treated plant represent 
reduced lipid peroxidation and 
induced/persisted SOD activity, 
GSH, polyphenol, JA, and ABA 
contents under osmotic stress 
condition

Soybean (G. max. L. Taekwang-
kong)

Radhakrishnan and Lee (2013a, b)

PAs ABA High number of Total PA and 
ABA were detected on drought-
tolerant plant

ABA induce PA accumulation/
oxidation

Grape (V. vinifera) Toumi et al. (2010)

PAs ABA Stress actives biosynthesis 
gene involved in PAs (ADC2, 
SPDS1 and SPMS) (Decreased 
tolerance to drought in ABA-
nulled mutant)

Arabidopsis (A. thaliana) Alcázar et al. (2006a)

Spm ABA Spm can modulate response to 
stress in ABA-dependent/inde-
pendent way

Arabidopsis (A. thaliana) Marco et al. (2019)

Put, Spm ET, ABA ABA induces biosynthesis of 
Put and Spm by regulating ET 
biosynthesis pathway (High 
accumulated ABA contents in 
tolerant plant)

Poplar (Populus popularis) Chen et al. (2002)

Spd SA SA- and Spd-treated plant 
showed high photosynthesis, 
antioxidant activity, and proline 
contents under stress

Cherry tomato (Lycopersicon 
esculentum)

Fariduddin et al. (2018)

PAs SA SA regulate PA contents under 
stress condition by modulating 
the expression level of biosyn-
thetic genes (ADC, MetDC and 
MAT)

Oats (A. sativa) Canales et al. (2019)

Spd, Spm GA, ABA Spm-treated plant showed high 
osmotic potential and reduced 
lipid peroxidation by accumu-
lating GA1, GA4, and ABA 
under stress condition

Grass (Agrostis stolonifera) Krishnan and Merewitz (2017)

Put, Spd ABA, ET Water Stress activates PAs and hormone 
biosynthesis pathway

Tobacco (N. tabacum) Hurng et al. (1994)
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to module these responses during abiotic stress is still not 
fully understood. Further, more research is needed to study 
how PAs can influence  H2O2/NO cross talk in plants during 
abiotic stress. In addition, there are many other questions 
related to PA-mediated signaling during abiotic stress that 
need to be addressed further to harness the potential of PAs 
in stress tolerance and growth improvement: (1) How PAs 
are sensed by extracellular and intracellular sensors? (2) 
How they regulate signaling of ROS,  H2O2, NO, and  Ca2+ 
in plants during abiotic stresses? (3) How they interact with 
different stress hormones to modulate downstream signal-
ing? (4) How can PAs modulate stress responses in plants 
when exposed to multiple stresses? To address these ques-
tions, researchers should focus on PA signal perception and 
transduction rather than its application. This emphasizes the 
need for high-throughput molecular and biochemical tools to 
unravel the complexity of PAs signaling and identify novel 
players involved in its perception and transduction. This 
review shows a schematic diagram of a possible regulatory 
mechanism underlying PA-induced stress tolerance in plants 
(Fig. 6). This model demonstrates how plants perceive mul-
tiple abiotic stresses such as cold, heat, drought, salinity, 
and heavy metals via cell wall/plasma membrane-associated 
receptors, increasing endogenous PA levels. Second, it dem-
onstrates how exogenous PAs are perceived by the cell wall 
or cell membrane sensors, followed by activation of signal 
transduction pathways linked to abiotic stress resilience. 
We also discussed how PA signals could be translated via 

different signaling pathways (via cytosolic sensors) that tar-
get their transcription factors for gene expression and their 
interactions with other hormones that lead to abiotic stress 
tolerance in plants. In addition, we have also highlighted 
the possible inter-organellar signaling activated by cytosolic 
PA accumulation in plants. Although a definitive picture of 
PA perception and signal transduction has yet to be estab-
lished, it is possible that cloning PA biosynthetic genes from 
more plants and introducing cutting-edge tools (forward and 
reverse genetics) will help to fill the gaps in PA signaling 
in plants.

Crosstalk Between Polyamines and Gaseous 
Signaling Molecules in Plants

PA metabolism in plants plays a significant role in regu-
lating other metabolic pathways. PA and ET biosynthesis 
are co-regulated as they share a common precursor. L-Arg 
is the common precursor for both PA and NO biosynthe-
sis. Recalde et al. (2021) highlighted the shared nitrogen 
network between PAs and NO as a new component of the 
signaling pathway and how it interacts with other biological 
processes, primarily the stress response. The  H2O2 produced 
during the oxidation of PAs acts as a signaling molecule 
at lower concentrations to induce biotic and abiotic stress 
responses, and at higher concentrations, it leads to plant cell 
death (Quan et al. 2008). Hence, cooperative regulation of 

Table 3  (continued)

Treatment with Poly-
amines in combina-
tion with different 
hormones

Abiotic Stress Physiological and biochemical 
or molecular changes for stress 
tolerance

Plant species References

PA Hormone

Spm SA Drought, Cr SA and Spm alleviate stress by 
accumulation of endogenous 
polyamines, osmolytes (pro-
line), total soluble sugar, total 
carbohydrate, and antioxidants 
(APX activity)

SA- and Spm-treated plant 
showed low ROS, lipid peroxi-
dation, and relative membrane 
permeability under both 
stresses condition

Maize (Z. mays L.) Naz et al. (2021)

Put, Spm SA Cd Put-treated plant alleviate stress 
via crosstalk with SA

Wheat (T. aestivum L.) Tajti et al. (2018)

PAs ET Cd Cadmium induces transcript 
expression of gene involved 
in metabolism of PA and ET 
(ACS, DAO, and SAMDC)

Soybean (G. max) Chmielowska-Bak et al. (2013)

Put ET Al Put-treated plant alleviate stress 
by inhibition of ET production

Wheat (T. aestivum L.) Yu et al. (2016)
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PA, NO, ET biosynthesis, and PA oxidation plays a key role 
in plant growth and development under abiotic stress condi-
tions. The  H2O2 produced during PA oxidation induces the 
nitric oxide synthase (NOS) gene expression, stimulating 
the ABA-mediated stomatal closure during drought stress 
(Neill et al. 2008). Transgenic barley plants overexpress 
the barley non-symbiotic hemoglobin gene (HvHb1) that 
oxidizes NO to  NO3 –, producing less NO during drought 
stress. This reduced NO level leads to high levels of PAs, 
mainly Spd accumulation, and decreased ET biosynthesis 
during drought stress, indicating that NO-ET plays a key 
regulatory role in PA biosynthesis linked to drought tol-
erance in barley (Montilla-Bascón et al. 2017). In tomato 
plants, the exogenous application of Spd and Spm induces a 
significant increase in the NO and  H2O2 levels during chill-
ing stress, while Put does not affect the NO content (Groppa 
et al. 2003). However, the effect of Spd on NO accumulation 
during chilling stress is greatly reduced by the application 
of an  H2O2 inhibitor (DPI; an NADPH oxidase inhibitor) 
and DMTU (an  H2O2 and OH· scavenger), indicating the 
involvement of  H2O2 in the PA-induced NO production 

during chilling stress (Groppa et al. 2003). Tomato seedlings 
pretreated with sodium nitroprusside (SNP, an NO donor) 
showed elevated Put and Spd levels throughout the chill-
ing stress treatment period, but SNP did not increase the 
Spm levels, which remained constant under chilling stress 
(Groppa et al. 2003). Further, it was also observed that exog-
enous application of Put induced ABA-mediated chilling 
stress tolerance in tomato seedlings by maintaining mem-
brane integrity. In ginger (Zingiber officinale) Roscoe seed-
lings, the exogenous application of SNP and Spd increased 
the chilling stress tolerance by protecting photosystem II 
(PSII), increasing unsaturated fatty acid levels in mem-
branes, and enhancing ROS scavenging mechanism. The 
combined application of SNP and Spd had a more signifi-
cant and positive effect on chilling tolerance in ginger seed-
lings (Li et al. 2014). Additionally, according to Filippou 
et al. (2013), the NO donor SNP controls the metabolism 
of PA and proline in Medicago tranculata leaves. Adami-
pour et al. 2020 investigated how PAs, NO synthase (NOS), 
and  H2O2 (secondary messenger) regulate stomatal aperture 
in response to drought stress in Rosa canina. Jahan et al. 

Fig. 6  A hypothetical model highlighting the PA-mediated signaling 
mechanism regulating abiotic stress tolerance in plants. This model 
highlights how plants can perceive multiple abiotic stress (using cell 
wall/ plasma membrane-associated receptors), leading to the eleva-
tion of endogenous PA levels. The model highlights how these PA 
signals can be translated via different signaling pathways (using cyto-
solic sensors) targeting their respective transcription factors for gene 

expression and their interplay with other hormones, leading to abiotic 
stress tolerance in plants. In addition, it highlights the inter-organel-
lar signaling activated by cytosolic PA accumulation in plants. SOD, 
superoxide dismutase;  H2O2, hydrogen peroxide; RBOH, NADPH 
oxidase/respiratory burst oxidase; PA, polyamines; NO, nitric oxide; 
PM, plasma membrane; ER, endoplasmic reticulum; ROS, reactive 
oxygen species; AAs, amino aldehydes; GABA, γ-aminobutyric acid
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(2019) showed that melatonin administration reduces heat-
induced damage to tomato seedlings by regulating PA and 
NO production and restoring redox equilibrium. Similarly, 
prior exposure to NO increased chilling tolerance in banana 
(M. acuminata) fruits by increasing levels of PAs, GABA, 
and proline (Wang et al. 2016).

The exogenous application of Put (0.2 mM) and SNP 
(1 mM) conferred tolerance against Cd toxicity in mung 
bean (Vigna radiata L. cv. BARI Mung-2) seedlings treated 
with  CdCl2, (1.5 mM). The application of Put and SNP 
reduced Cd uptake, increased phytochelatin content, and 
reduced oxidative damage by enhancing enzymatic and non-
enzymatic ROS scavenging mechanisms. This effect was 
further improved by the combined application of Put and 
NO (Li et al. 2014). Adding Put and Spd to apple (M. domes-
tica Borkh.) embryos alleviated embryonic dormancy and 
induced germination by stimulating Arg-dependent NO for-
mation, while the application of Spm inhibited NO forma-
tion (Krasuska et al. 2017). Similarly, pretreatment with NO 
increased endogenous Put content, decreased Spm biosyn-
thesis, and enhanced Spm oxidation (Krasuska et al. 2017). 
Transgenic tomato plants with overexpression of SAMDC 
and the yeast SPDS gene, under the control of the E8 pro-
moter, showed high levels of Spd, Spm, and ET, indicating 
that both ET and PA biosynthesis can occur simultaneously 
and the effect of high ET content is masked by higher con-
centrations of Spd and Spm (Mehta et al. 2002). Further, 
transgenic tomato fruits overexpressing the mouse ODC 
gene showed delayed on-vine ripening and extended shelf 
life due to increased PAs and reduced ET production (Pan-
dey et al. 2015). In transgenic Arabidopsis, plants overex-
pressing the 35S:AtADC2 gene showed increased Put con-
tent and reduced transcript abundance of genes involved in 
ET biosynthesis (Alcázar et al. 2005). The improvement in 
plant tolerance to abiotic stress when their cellular contents 
are increased by either exogenous treatment with PA or 
genetic transformation of genes encoding PA biosynthetic 
enzymes is suggestive of the protective role of PAs.

Crosstalk Between Polyamines 
and Hormones

Although PAs are not hormones, they have been proposed 
as a new class of plant growth regulators due to their par-
ticipation in control of several growth and development 
processes and responses to abiotic stressors in plants (Chen 
et al. 2019). Many studies have found that PAs interact 
synergistically or antagonistically with various plant hor-
mones, suggesting the possibility of crosstalk between hor-
mones and PAs (Bitrián et al. 2012; Milhinhos and Miguel 
2013). PAs are generally considered antisenescence growth 
regulators that appear to exert protective effects against 

ET-induced fruit ripening, leaf senescence, and biotic 
stressors (Nambeesan et al. 2008). The substrate for ET 
biosynthesis (S -adenosylmethionine (SAM)) is the same 
as for PAs biosynthesis, which could influence whether ET 
or Spd/Spm production takes precedence if SAM becomes 
limited (Lasanajak et al. 2014). Previous studies have shown 
that PAs and ET show antagonistic interactions with one 
another, implying that they may distinctly regulate different 
developmental and physiological responses in plants. ABA 
is another hormone that interacts with PAs in regulating an 
array of physiological and biochemical responses, such as 
 Ca2+ homeostasis, ROS, and NO, which are important for 
plant adaptation to stresses (Pal et al. 2018). The relation-
ship between PAs and ABA is reciprocal. Put induces the 
expression level of the 9-cis-epoxycarotenoid dioxygenase 
3 (NCED3) gene involved in ABA synthesis, whereas ABA 
treatment increases the expression level of the S-adenosyl-
l-methionine synthetase 1 (SAM1), SAM3, spermidine syn-
thase (SPDS3), and peroxisomal polyamine oxidase (PAO) 
(Cuevas et al. 2008; Alcázar et al. 2010; Pál et al. 2018). 
The positive effects of PAs and ABA in mitigating abiotic 
stresses have been reported for many plants. For example, 
under water stress, the transcript levels of ADCs, SPDSs, 
and spermine synthases (SPMSs) were increased, but not 
in ABA mutants (Alcázar et al. 2006a, b). Similarly, many 
drought-tolerant plant species also showed accumulation of 
ABA and Put, showing that these two components can pro-
tect the plant from external challenges (Jiang et al. 2012; 
Anwar et al. 2015). In transgenic Arabidopsis plants, putres-
cine accumulation hindered gibberellic acid (GA) biosynthe-
sis, resulting in stunted stature and delayed flowering (Alca-
zar et al. 2005). Furthermore, jasmonic acid (JA) has also 
been linked to formation of conjugated PAs in plants. This 
was further proved by RNAi-mediated silencing of R2R3-
MYB8, a JA responsive transcription factor, which dem-
onstrated that MeJA induces PA conjugation and involves 
R2R3-MYB8 (Kaur et al. 2010). Similarly, MeJA stimu-
lates the transcription of Put N-methyltransferase (PMT), 
an enzyme that converts Put to N-methyl-Put (Shoji et al. 
2000). In mango (González-Aguilar et al. 2000) and apples 
(Yoshikawa et al. 2007), an increase in free Spd and Spm in 
MeJA-treated fruits correlates with low-temperature stress 
tolerance, suggesting a role for free Spd and Spm in fruit 
ripening and low-temperature stress tolerance. However, 
the effects of PAs on JA synthesis, conjugation, perception, 
and signal transduction are poorly understood. Auxins are 
another class of phytohormones that mediate plants' gravit-
ropic and phototropic responses. The link between PAs and 
auxin and their crosstalk was discovered from transgenic and 
transcriptomic studies in different crop systems. For exam-
ple, SPMSYN transgenic leaves showed an upregulation of 
many auxin-related genes, highlighting PA's positive effect 
on the auxin pathway. In contrast, no difference in free and 
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bound amounts of IAA was observed between the control 
and HM stress conditions in Spd-treated radish seedlings 
(Choudhary et al. 2011). In Arabidopsis, Spm downregu-
lates several auxin carriers, including the ARF, Aux/IAA, 
and SAUR genes, whereas higher Spd and Spm levels boost 
the expression of several auxin-regulated genes in tomato 
fruit (Kolotilin et al. 2011). These results further reveal that 
individual PAs interact distinctly with plant auxin signaling. 
However, the effect of PAs on auxin biosynthesis, transpor-
tation, and signaling is poorly understood. More research 
into their role in regulating auxin function is required. The 
link between PAs and GA was discovered by chance during 
the analysis of transgenic Arabidopsis plants that ectopi-
cally expressed arginine decarboxylase (35S:AtADC2) and 
accumulated high levels of free and conjugated Put (Alcazar 
et al. 2005). Put and GA have an antagonistic relationship, 
demonstrating that accumulated Put interferes with the final 
step of the GA biosynthesis pathway in transgenic Arabidop-
sis (Alcázar et al. 2005). Due to a lack of the hormone GA, 
this transgenic Arabidopsis exhibits dwarf phenotype and 
delayed blooming (Alcázar et al. 2005). In Spm-accumulated 
Arabidopsis, repressed transcript levels of genes engaged 
in the process of active form GA, GA 13-/20-oxidase, and 
elevated transcript levels of GA catabolism-related gene, GA 
2-oxidase, were also detected (Gonzalez et al. 2011). Further 
research into the interaction of GA and PAs is needed in 
both model and crop plants to better understand the mode of 
crosstalk between these two molecules and how they affect 
each other at the biosynthetic, transportation, and signaling 
levels under control and stress conditions.

Salicylic acid has an important role in plant defense sign-
aling under biotic and abiotic stresses such as against path-
ogens, temperature, salinity, and drought (Agostini et al. 
2013; Ali et al. 2017, 2018b). It is well known that plants 
facing stress start synthesizing endogenous SA mainly via 
the isochorismate (ICS) pathway in the chloroplasts (Demp-
sey et al. 2011). Treatment with SA induces the accumu-
lation of Spd, Spm, and Put in various species, including 
Arabidopsis, citrus, tomato, bamboo (Bambusa vulgaris), 
and asparagus (Asparagus officinalis) (Zheng and Zhang 
2002; Wei et al. 2011; Zhang et al. 2011; Luo et al. 2012). 
Likewise, Spd and Spm can alter the conjugation of SA. 
For example, Spm/Spd-overproducing plants revealed a 
high level of SAM-dependent carboxyl methyltransferase 
(SAMT) and GH3-like phytohormone amino acid synthetase 
(GH3.5), which encode SA-converting enzymes (Lazzarato 
et al. 2009; Gonzalez et al. 2011). These studies provide evi-
dence of occurrence of PA and hormone crosstalk in plants 
under stress conditions. However, little is known about 
the signal transduction pathways regulating this crosstalk 
at the molecular level. Although tremendous progress has 
been made in understanding the regulation of biosynthesis 
and signal transduction pathways for most plant hormones, 

research into the molecular mechanisms underlying PA 
action has begun recently. Here, we have highlighted how 
PAs interact with several hormonal pathways to maintain 
growth-defense tradeoffs (Fig. 7). Many questions such as 
how PAs modulate growth and defense tradeoffs during mul-
tiple stresses under field conditions and how PAs interact 
with different hormones during abiotic stresses and crosstalk 
with them to provide more effective stress resilience remain 
to be explored. In future, researchers should also study the 
effect of PA metabolism on different hormonal signaling 
pathways and vice versa, which will provide novel avenues 
for developing future resilient smart crops.

Underpinning Polyamines Signaling 
and Their Cross Talk in Plants Using 
Multi‑omics

PAs promote plant growth and development and stress tol-
erance. Unfortunately, little is known about the molecular 
mechanisms by which PAs regulate or modulate these pro-
cesses. The crucial participants in PA signal reception and 
transduction, such as sensors, transporters, transcriptional 
factors, proteins, and metabolites, remain unexplored. None-
theless, it is well understood that during biotic or abiotic 
stresses, application of exogenous PAs or PA synthesized 
inducers and overexpression of PA genes in plants leads 
to stress tolerance (Agudelo-Romero et al. 2013; Pál et al. 
2018). However, there are many knowledge gaps about how 
PAs modulate transcriptional, proteomic, metabolic, and 
ionomic stress adaptive responses and interact with other 
signaling pathways in plants. Using multi-omics tools and 
genome editing will be useful to assess the molecular com-
plexity of PA signal perception and transduction and its 
crosstalk with other signaling players such as hormones, 
ROS, calcium, NO, and  H2S. This will aid in investigating 
its role in plant development and stress biology. In addi-
tion, it would provide a more comprehensive picture of the 
consequences of the up- or downregulation of genes asso-
ciated with stress tolerance and PAs. Similarly, metabo-
lomics, which measures the number of metabolites within 
an organism, which are usually the end-products of genomic, 
transcriptomic, and proteomic variations, can be used to 
determine the overall phenotypic responses to environmen-
tal signals (Hong et al. 2016). This high-throughput tool is 
often combined with nuclear magnetic resonance (NMR), 
mass spectrometry (MS), liquid chromatography-MS, or gas 
chromatography-MS (Gathungu et al. 2014). Numerous met-
abolic processes and end-products direct plants' biochemi-
cal and physiological abiotic stress resistance mechanisms. 
Metabolomics offers a comprehensive approach to identi-
fying PA biosynthetic pathway metabolites to understand 
biochemically mediated stress resistance. With the growing 
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interest in plant metabolic engineering using genetic manip-
ulation and gene editing technologies to improve growth, 
nutritional value, and environmental adaptation, one major 
concern is the possibility of unintended broad and far-reach-
ing consequences of manipulating the target gene or meta-
bolic step in the resulting plant. In future, metabolomics and 
molecular networking studies are required to identify the 
interaction of PA and novel metabolites that will provide 
novel avenues for metabolic engineering in crops to develop 
future stress and higher yielding smart crops. Finally, identi-
fying distinct or shared regulatory nodes of metabolic path-
ways and crosstalk between the various pathways affected by 
genetic manipulation of PA metabolism will give us effective 
targets for development of genetically engineering plants 
resistant to multiple abiotic stresses.

Furthermore, when PA synthesis is increased, either 
chemically or through transgenic manipulation, there is an 
increase in PA catabolism and increased excretion and/or 
transport. Many studies have primarily focused on animal 
cells, and there is limited information on increased PA pro-
duction and catabolism in plants. Only a few studies have 
looked into the influence of PA overproduction on turnover 
and catabolism in transgenic plants expressing genes for 
PA biosynthetic enzymes and the subsequent increases in 

cellular PA levels (Kumar and Minocha 1998). For example, 
Page et al. (2016) showed that cellular transcriptome and 
metabolome are reprogrammed due to genetic manipulation 
of Put biosynthesis in black poplar (Populus nigra). Their 
findings showed that increased expression of a single mol-
ecule in the PA biosynthetic pathway (ornithine putrescine) 
changed the expression of a wide range of genes, many of 
which were involved in transcription, translation, osmoregu-
lation, cell wall metabolism, membrane transport, and stress 
responses. Similar studies can be targeted for important traits 
(biotic or abiotic stress tolerance, nutritional improvement), 
and the results could be implemented in molecular-assisted 
breeding and metabolomics or metabolic networking for sus-
tainable improvement of different crops. Furthermore, PA 
biosynthetic genes will be valuable candidates for genetic 
manipulation to create novel germplasm with better stress 
tolerance to combat adverse environments for agricultural 
crop sustainability.

Fig. 7  A proposed model 
showing how PAs can modulate 
growth and defense tradeoffs 
during multiple stresses by 
interaction with several hor-
monal pathways. The crosstalk 
between PAs and hormonal reg-
ulation has been demonstrated 
in some experiments, with 
downregulation of JA (Jasmonic 
acid) leading to cold tolerance, 
GA (Gibberellic acid) leading 
to stunted growth and delay in 
flowering, ET (Ethylene) lead-
ing to delay in ripening and leaf 
senescence, and ABA (Abscisic 
acid) leading to  Ca2+ homeosta-
sis and ROS and NO produc-
tion, while upregulation of SA 
(Salicylic acid) and Auxin delay 
in flowering. Some signaling 
pathways regulating cytokinin 
and BR (Brassinosteroid) and 
their interaction with different 
hormones are still unknown

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Journal of Plant Growth Regulation

1 3

Role of Nanoparticles in Increasing 
Polyamine Delivery and Efficacy for Crop 
Improvement

The integration of nanotechnology and plant biology has 
been used in crop improvement. It is gaining much attention 
owing to its multifaceted traits. Current advancements in this 
field are paving the way for a long-term increase in agri-
cultural productivity while reducing negative environmen-
tal consequences. Nanotechnology has helped improve soil 
quality (e.g., Nanofertilizers), accelerate plant growth (e.g,. 
seed primers, photosynthesis enhancers, growth promoters), 
and protect plants from biotic (nanopesticides, nanofungi-
cides) and abiotic stresses. In addition, nanotechnology can 
potentially increase crop productivity by targeted delivery, 
improve crop tolerance, and reduce pollution. Exogenous 
chemicals such as brassinolide, nitric acid, melatonin, 
silicon, polyamines, growth hormones, and selenium have 
been used to boost plant stress tolerance for salinity, heat, 
microbes, and heavy metals (Serna et al. 2015; Zhan et al. 
2019). However, their stability, target distribution, effec-
tiveness, and transportation remain the primary concerns in 
fully exploiting their potential for crop development. In this 
regard, nanobased engineering provides new opportunities 
for developing highly potent nanobased bio-stimulants that 
can be more effective and stable crop enhancement agents.

Nanoparticles can improve plant resistance to abiotic 
stress by scavenging ROS and enhancing antioxidant enzyme 
activity, improving photosynthetic rates and photoprotection 
(Jalil and Ansari 2019; Rajput et al. 2021). Furthermore, 
NPs can activate stress-related genes and increase the num-
ber of many target proteins involved in stress resilience (Jalil 
and Ansari 2019; Rajput et al. 2021). Several studies have 
found that the application of various nanomaterials, such 
as zinc oxide (ZnO NPs), titanium oxide  (TiO2 NPs), iron 
oxide  (Fe2O3 NPs), and silicon (Si-NPs), reduces the nega-
tive effects of abiotic stresses in various crop species (Das 
et al. 2018; Rani et al. 2020; Rostamizadeh et al. 2020). 
However, few studies have explored the role of nanocoated 
PAs in ameliorating abiotic stress resilience in sustainable 
agriculture. There are reports showing that NPs significantly 
increase the accumulation of PAs in plants. For instance, 
Mushtaq et al. (2020) have highlighted that iron oxide nano-
particles (IONPs) and Bacillus subtilis S4 exert a synergis-
tic anti-arsenic toxicity function in Cucurbita moschata by 
improving stress-relieving PA production, such as that of 
Spd and Put. In addition, their co-application increases the 
activity of antioxidant enzymes such as peroxidase (POD) 
and superoxide dismutase (SOD) while reducing levels of 
 H2O2, malondialdehyde (MDA), and electrolyte leakage 
(EL). Another study has revealed that MgONPs lead to the 
accumulation of PAs, which are critical for plant growth 

and development (Faiz et al. 2022). These studies provide 
the roadmap for harnessing the potential of NPs and PAs 
(co-application) and coated PAs for mitigating abiotic stress 
resilience in sustainable agriculture. Although PA coating 
has gained technological significance for human gene ther-
apy applications, it is yet to be explored in plants. Hence, 
there is a need to further study NP-coated PAs' role in plant 
stress tolerance and growth development.

Conclusions and Future Prospects

PAs are involved in plant growth and development, including 
seed germination, organogenesis, tissue lignification, abscis-
sion, senescence embryogenesis, flowering, pollination, fruit 
development, and ripening. Synergistic and antagonistic 
interactions with distinct plant hormones have been seen in 
all these processes, but the molecular mechanisms by which 
PAs regulate these processes and interact with different hor-
mones remain unknown. The signal transduction pathways 
that regulate a wide range of PA-triggered growth responses 
in plants are poorly understood. As a result, further research 
is needed to better understand the molecular mechanisms 
by which PAs regulate various plant development features 
and how their interactions with hormones and other growth-
promoting substances work together to improve plant growth 
and development. Second, PAs have been shown to enhance 
abiotic stress tolerance in plants by activating a multifac-
eted defense system. However, there is limited informa-
tion on PAs signal perception and transduction in plants. 
For example, sensors, transporters, transcriptional factors, 
proteins, and metabolites involved in PAs perception and 
transduction are still unknown. In addition, how PAs regu-
lates or triggers various signaling cascades like  Ca2+, ROS, 
NO, and different hormones during abiotic stresses remains 
unknown. Furthermore, how PAs trigger transcriptional, 
proteomic, metabolic, and ionomic reprogramming in plants 
remains obscure. Moreover, fundamental questions about 
PA transport between organelles and cells and their role in 
epigenetic modifications also remain unanswered. Utilizing 
multi-omics and genome editing tools to assess the molecu-
lar complexity of PAs signal perception and transduction, 
and its crosstalk with other signaling players such as hor-
mones, ROS, calcium, NO, and  H2S, will aid in an in-depth 
investigation of its role in plant developmental and stress 
biology and the development of future stress resilient smart 
crops. Plant stress tolerance and high yield may be mutu-
ally exclusive results because both are energy-intensive pro-
cesses with unknown tradeoffs. For example, PAs can alter 
various morphological, physiological, and biochemical fea-
tures in response to abiotic stresses to allow plant survival, 
but this might harm growth circumstances. For example, 
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closing stomata for prolonged periods during drought stress 
can limit crops' photosynthetic ability, resulting in reduced 
growth.

Thus, researchers utilizing PAs must balance two poten-
tially competing processes to improve stress tolerance and 
yield by focusing on growth and stress tradeoffs. Recently, 
molecular priming has emerged as a novel and cost-effective 
method of improving stress resilience in plants. Seed prim-
ing with different PAs has significantly improved the abi-
otic stress tolerance and germinating seedling growth per-
formance. However, some factors, such as stability, target 
distribution, effectiveness, and transportation, limit the 
ability to fully exploit their potential for crop improvement. 
In this regard, nanobased engineering opens new avenues 
for developing highly potent nanobased PAs bio-stimulants 
that can be more effective and stable for crop enhancement 
agents. Finally, yet importantly, future studies should focus 
on elucidating the molecular mechanisms that regulate PAs 
during abiotic stresses and their impact on adaptive signaling 
cascades to provide a more practical means of their involve-
ment in plant stress biology.
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